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Abstract A super model that includes proportional hazards, proportional
odds, accelerated failure time, accelerated hazards, and extended hazards mod-
els, as well as the model proposed in Diao et al. (2013) accounting for crossed
survival as special cases is proposed for the purpose of testing and choosing
among these popular semiparametric models. Efficient methods for fitting and
computing fast, approximate Bayes factors are developed using a nonparamet-
ric baseline survival function based on a transformed Bernstein polynomial.
All manner of censoring is accommodated including right, left, and interval
censoring, as well as data that are observed exactly and mixtures of all of
these; current status data are included as a special case. The method is tested
on simulated data and two real data examples. The approach is easily carried
out via a new function in the spBayesSurv R package.

Keywords Interval censoring · Model choice · Bernstein polynomial · Bayes
factor

1 Introduction

One of the central interests in health sciences research is to identify and
quantify the association between the mortality/incidence of a certain disease
and its potential risk factors, so that risk factors can be used in disease pre-
vention and control. Survival models serve as the major statistical tools in
analyzing mortality/incidence data. Among them, the Cox proportional haz-
ards model (PH) (Cox, 1992) is unquestionably the most popular one in prac-
tice, where the risk factor has a multiplicative association with hazard risk.
Let Hx(t) be the cumulative hazard function for a subject with covariates
x = (x1, x2, . . . , xp)

′ and H0(t) be the baseline cumulative hazard function for
those with x = 0. The proportional hazards model can be written as

Hx(t) = eβ
′xH0(t)

where β = (β1, β2, . . . , βp)
′ is a vector of unknown coefficients, and eβj repre-

sents the hazard ratio corresponding to a one unit increase of the jth covariate.
When the proportional hazard assumption is invalid, the accelerated failure
time (AFT) model (Kalbfleisch and Prentice, 2011), and proportional odds
(PO) model can be considered as alternative models. Let Sx(t) and S0(t) de-
note the survival function and baseline survival function, and hx(t), h0(t) de-
note the hazard and baseline hazard function corresponding to Hx(t), H0(t).
The accelerated failure time model can be written as

Sx(t) = S0

{
eβ
′x t
}
,

where eβj represents the time scale change due to the jth covariate in survival
probability. The proportional odds model can be written as

1− Sx(t)

Sx(t)
= eβ

′x 1− S0(t)

S0(t)
,
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where eβj represents the change in failure odds by time t due to the jth
covariate.

All of the models mentioned above do not account for crossing survival
curves for different covariate combinations. Failure to capture crossing sur-
vival may incorrectly characterize the association between risk factors and
mortality/incidence. Chen and Wang (2000) and Chen et al. (2014) consider
the accelerated hazards model (AH), which is

hx(t) = h0

{
eβ
′x t
}
,

where eβj represents the time scale change in hazard risk due to the jth covari-
ate. Zhang and Peng (2009) discuss properties of the hazard function under
PH, AH and AFT models. Etezadi-Amoli and Ciampi (1987), Chen and Jewell
(2001), and Li et al. (2015) consider the extended hazards model (EH)

hx(t) = exp(β′x)h0{exp(γ′x)t}. (1)

Here, β = γ gives AFT, γ = 0 gives PH, and β = 0 gives the AH model.
Quantin et al. (1996) consider a generalization of PH that allows for cross-

ing survival curves Hx(t) = eβ
′xH0(t)exp(x

′γ); the PH model is formally nested
within when γ = 0. Also see Devarajan and Ebrahimi (2011) and references
therein. Diao et al. (2013) add covariates to the model of Yang and Prentice
(2005) (YP) yielding the hazard model

hx(t) =
exp(β′x + γ′x)h0(t)

exp(β′x)F0(t) + exp(γ′x)S0(t)
. (2)

They point out that

lim
t→0+

hx1
(t)

hx2(t)
= eβ

′(x1−x2), lim
t→∞

hx1
(t)

hx2(t)
= eγ

′(x1−x2),

thus β gives a short-term relative risk interpretation whereas γ gives a long-
term relative risk interpretation. Note that β = γ and γ = 0 give PH and PO
as a formally nested special cases, respectively.

Each model listed above can capture different characteristics of survival
data. However, choosing which model is the most appropriate and accurate
in reflecting the association between the potential risk factors and mortal-
ity/incidence is a challenge and an important question that needs to be ad-
dressed. The YP model (2) and EH model (1) augment β with an entirely
new set of p regression effects, say γ, to formally nest simpler models within
a larger super model. Such augmentations allow for simpler models to be spe-
cial cases arising from standard linear constraints on the parameters, thus the
likelihood ratio tests for frequentist models, or efficient computation of Bayes
factors for Bayesian models can be used.

Another aspect of survival analysis is that survival times can be censored
in myriad ways, including right, left, and interval censoring (Sun, 2006), as
well as data that are observed exactly and mixtures of all of these; current
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status data are included as a special case. It is challenge to handle all types
of censoring simultaneously from frequentist approaches.

This paper develops a super model that includes the PH, PO, AFT, AH,
YP and EH models as formally nested special cases. As such, model choice
among these models can be carried out by computing approximate Bayes fac-
tors based on the Savage-Dickey ratio (Verdinelli and Wasserman, 1995). A
transformed Bernstein polynomial prior proposed by Chen et al. (2014) is used
to model baseline survival S0 and a multivariate normal g-prior for regression
coefficients is developed. All manner of censoring is accommodated and the
approach is implemented via a new function in the spBayesSurv R package.
Once a model is chosen, any of PH, PO, or AFT can be fitted through many ex-
isting R packages including the spBayesSurv R package. The remaining paper
is organized as follows: Section 2 describes the proposed super model; Section 3
lists details about the Bayesian estimation procedure, including prior develop-
ment, posterior sampling, and Bayes factor computation; Section 4 presents a
simulation and two real data analyses with software implementation. Conclu-
sions are made in Section 5.

2 Model

The super model proposed has the following closed form

Sx(t) =

1 + e(βo−βh+βq)
′x
F0

{
eβ
′
qx t

}
S0

{
eβ
′
qx t

}
− exp{(βh−βq)′x}

, (3)

where the baseline cumulative distribution and survival functions are F0(·)
and S0(·). The hazard is computed to be

hx(t) =
e(βo+βh+βq)

′xh0

{
eβ
′
qx t

}
e(βo+βq)′xF0

{
eβ
′
qx t

}
+ eβ

′
hxS0

{
eβ
′
qx t

} . (4)

Then fx(t) = hx(t)Sx(t) through (3) and (4).
The super model includes PH, AFT, PO, AH, EH and YP models as special

cases. One can show if Hh : βq = 0, βo = βh is true, then

Sx(t) = S0(t)exp(β
′
hx),

the PH model obtains. Similarly, assuming Ho : βq = βh = 0 implies

Fx(t)

Sx(t)
= eβ

′
ox
F0(t)

S0(t)
,

the PO model. Assuming Hq : βo = 0, βh = βq implies

Sx(t) = S0

{
eβ
′
qx t

}
,
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the AFT model (proportional quantiles). Assuming Ha : βh = 0, βq +βo = 0
implies

hx(t) = h0

{
eβ
′
qx t

}
,

the AH model obtains. YP model (2) occurs as a special case whenHy : βq = 0;
EH model (1) is a special case when He : βh = βq + βo.

We seek to fit model (3) assuming a transformed Bernstein polynomial
prior on S0(·), and test the adequacy of the formally nested hypotheses Hh,
Ho, Hq, Ha, Hy and He via Bayes factors.

3 Priors and Bayes factors

3.1 Transformed Bernstein polynomial prior on baseline survival S0

For a given positive integer J , the Bernstein polynomial of degree J − 1 is
defined by

b(x|J, ξJ) =

J∑
j=1

ξJjβ(x|j, J − j + 1), (5)

where ξJ = (ξJ1, . . . , ξJJ)′ is a vector of positive weights satisfying
∑J
j=1 ξJj =

1 and β(·|a, b) denotes a beta density with parameters (a, b). Clearly b(x|J, ξJ)
is a density function and is very flexible, so that, in fact, any smooth den-
sity with support (0, 1) can be well approximated by a Bernstein polynomial
(Ghosal, 2001). More precisely, if f(x) is any continuously differentiable den-
sity with support (0, 1) and bounded second derivative, it can be shown that,
with suitable choice of ξJ ,

sup
0<x<1

|f(x)− b(x|J, ξJ)| = O(J−1).

Integrating (5) gives the corresponding cumulative distribution function (cdf)

B(x|J, ξJ) =

J∑
j=1

ξJjIx(j, J − j + 1), (6)

where Ix(a, b) is the cdf associated with β(x|a, b). Note that one can calculate
(6) without too much computational cost through the recursive relation

Ix(j + 1, J − j) = Ix(j, J − j + 1)− Γ (J + 1)

Γ (j + 1)Γ (J − j + 1)
xj(1− x)J−j .

A referee has brought up the issue of consistency and the choice of J .
Note at the outset that none of the semiparametric models under considera-
tion support the “truth,” as they are all first-order approximations to reality
formulated to provide readily interpretable regression coefficients. However,
some assurance that the Bernstein polynomial supports a wide range of density
shapes and is consistent over this range is comforting. Petrone and Wasserman
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(2002) show that under mild conditions on the true underlying density and
suitable priors on J ∈ N+ and ξJ , the posterior predictive density (i.e. Bayes
estimate of the density with respect to quadratic loss) is Hellinger consistent.
Fitting such a model is complicated and typically done via reversible jump
MCMC (?). As such, the vast majority of authors simply fix J at some “rea-
sonable” value, truncating the estimate; Chen et al. (2014) suggest J = 15
based on simulations involving the random L1 distance between the prior and
the truth. Accordingly, Petrone and Wasserman (2002) further argue that a
truncated Bernstein polynomial will converge to a Bayes estimate that mini-
mizes the Kullback-Liebler distance between the truncated estimate and the
truth. Certainly larger values J > 15 can be chosen to achieve more flexible
estimates of the baseline survival density; the supplemental material inChen
et al. (2014) can provide a guide in terms of L1. However, there is a “law
of diminishing returns”, also observed by Hanson (2006), in that the LPML
tends to level off and not increase after some K for J ≥ K. Restated, the
cross-validated predictive ability of the model does not increase after some K.
In this spirit, and similar to the use of AIC in choosing the number of mixands
in finite mixture models, one could choose J = K based on when LPML levels
off. However, each computation of the LPML requires a separate MCMC run.

A remarkably useful result is that any Bernstein polynomial can be written
in terms of Bernstein polynomials of higher degree through the relation

β(x|j, J − j) =
J − j
J

β(x|j, J − j + 1) +
j

J
β(x|j + 1, J − j).

It follows that b(x|J−1, ξJ−1) can be written as b(x|J, ξ∗J) with suitable choice
of ξ∗J . Since every lower order Bernstein polynomial J < K is included as a
special case of J = K, one only need pick one reasonable J = K; a prior on
1 ≤ J ≤ K is superfluous.

Regarding the prior for ξJ , we consider a Dirichlet distribution,

ξJ |J ∼ Dirichlet(α, . . . , α), (7)

where α > 0 is a parameter. An attractive property of the BP prior specified
above is that E[b(x|J, ξJ)] =

∑J
j=1 β(x|j, J−j+1)/J = 1 and E[B(x|J, ξJ)] =

x for x ∈ (0, 1).
We next describe how we define a random survival function S0 based on

(5). Let {Sθ : θ ∈ Θ} denote a parametric family of survival functions with
support on positive reals R+. For example, a log-logistic family is defined as
Sθ(t) = {1+(eθ1t)exp(θ2)}−1 in our R function, where θ = (θ1, θ2)′. Weibull and
log-normal families are also implemented in the function. In our experience all
three parametric distribution families yield similar results across many data
sets. Note that Sθ(t) always lies in the interval (0, 1) for 0 < t < ∞, so
a natural prior on S0, termed the transformed Bernstein polynomial (TBP)
prior, is

S0(t) = B(Sθ(t)|J, ξJ), (8)

with density
f0(t) = b(Sθ(t)|J, ξJ)fθ(t), (9)
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where fθ is the density associated with Sθ. Clearly, the random distribution
S0 is centered at Sθ, that is, E[S0(t)] = Sθ(t) and E[f0(t)] = fθ(t). The weight
parameters ξJ “adjust” the shape of the baseline survival S0 relative to the
prior guess Sθ. If all ξJjs are equal to 1/J then S0 ≡ Sθ. This adaptability
makes the TBP prior attractive in its flexibility, but also anchors the ran-
dom S0 firmly about Sθ. Moreover, unlike a mixture of Polya trees prior, the
TBP prior always selects smooth densities, leading to more efficient posterior
sampling.

The TBP parameter α acts much like the precision in a Dirichlet process
(Ferguson, 1973), controlling how stochastically “pliable” S0 is relative to Sθ.
Large values of α indicate a strong belief that S0 can be modeled using Sθ,
since as α tends to infinity, the random S0 is Sθ with probability one. On
the other hand, a smaller values of α allow more pronounced deviations of
S0 from Sθ. The choice of α = 1 has been advocated by many authors, e.g.
recently (Chen et al., 2014). Similar to Dirichlet processes we consider a gamma
prior on α, say, α ∼ Γ (a0, b0), where a0 is the shape parameter and b0 is the
rate parameter. Through L1 considerations, Chen et al. (2014) provide some
guidance on choosing an informative prior for α, but this is not pursued here;
in our experience different priors for α leads to very similar posterior inference
in reasonably large sample sizes.

3.2 Prior on regression coefficients

The g-prior (Zellner, 1983) has been widely considered for model selection
in Bayesian regression models. Hanson et al. (2014) develop an informative
g-prior for logistic regression; we consider their approach adapted for use in
the semiparametric survival models considered here. The prior is

β ∼ Np(0, gn(X∗′X∗)−1), (10)

where n is the sample size, X∗ is the usual n × p design matrix only with
mean-centered predictors, i.e. 1′nX

∗ = 0′p. Derivations in Hanson et al. (2014)
imply that for covariates x generated from some distribution H with support
on X ⊂ Rp and β assigned in (10),

e(x−µ)′β •∼ logN(0, gp),

where µ =
∫
X xH(dx). Thus, a priori, the relative risks (PH), acceleration

factors (AFT), and odds factors (PO) of random individuals x relative to their
sample mean x̄ approximately follow a log-normal distribution in reasonably
large samples. A simple method for choosing g is to pick a number M such
that any random quantity e(x−µ)′β is less than M with probability r. A simple
calculation reveals that

g =

[
logM

Φ−1(r)

]2
1

r
.
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For example, choosing M = 10 and r = 0.9 yields g = 3.228
p ; these are the

values considered here. Concisely,

βh,βo,βq
iid∼ Np(0,S

∗
0), where S∗0 = 3.228n

p (X∗′X∗)−1.

3.3 Likelihood construction and MCMC

Let ti be a random survival time for the ith individual and xi be a related
p-dimensional vector of covariates, i = 1, . . . , n. Assume the survival time ti
lies in the interval (ai, bi), 0 ≤ ai ≤ bi ≤ ∞. Here left-censored data are of the
form (0, bi), right-censored (ai,∞), interval-censored (ai, bi) and uncensored
values simply have ai = bi, i.e., we define (x, x) = {x}.

Denote by D = {(xi, ai, bi); i = 1, . . . , n} the set of observed data. Assume
ti ∼ Sxi(·), where Sxi(t) is given by (3) with the TBP prior on S0(t) and f0(t)
defined in (8) and (9). Set β = (β′h,β

′
o,β
′
q)
′. The likelihood for (ξJ ,θ,β) is

given by

L(ξJ ,θ,β) =

n∏
i=1

[Sxi(ai)− Sxi(bi)]
I{ai<bi}fxi(ai)

I{ai=bi}. (11)

Markov chain Monte Carlo (MCMC) is carried out through an empirical Bayes
approach coupled with adaptive Metropolis-Hastings updating (Haario et al.,
2001). The posterior density given the data D is

p(ξJ ,θ,β, α|D) ∝ L(ξJ ,θ,β)p(ξJ |α)p(α)p(θ)p(βq)p(βo)p(βh),

where p(ξJ |α) is the density of the Dirichlet distribution in (7) and the re-
maining terms are prior densities for α, θ, βh, βo, and βq. Here we assume

α ∼ Γ (a0, b0), θ ∼ N2(θ0,V0) and βh,βo,βq
iid∼ Np(0,S

∗
0).

Note that when ξJj = 1/J the underlying parametric model with S0(t) =
Sθ(t) is obtained and L(ξJ ,θ,β) is equal to the corresponding parametric
likelihood function. A fit from a standard parametric survival model can pro-
vide starting values for the TBP survival model. Consider a standard fit
log ti = τ0 + τ ′xi + σεi using the survreg function in the survival pack-

age for R, where ε1, . . . , εn
iid∼ F (ε). For log-logistic data F (ε) = eε

1+eε (stan-
dard logistic), for Weibull F (ε) = 1 − exp(−eε) (extreme value), and for
log-normal F (ε) is the standard normal cdf. This model has a scale σ, in-
tercept τ0, and regression coefficients τ ′ = (τ1, . . . , τp). We parametrize Sθ(t)

so that θ1 = −τ0 and θ2 = − log σ. Let θ̂ and V̂ be the point and asymp-
totic variance estimates for θ via the survreg fit. To choose starting val-
ues for β, we fit both the Weibull and log-logistic survreg models. Noting
that the Weibull model has both PH and AFT representations and the log-
logistic model has both PO and AFT representations, the survreg fits with
Weibull and log-logistic will provide us coefficient estimates under each of the
PH, PO and AFT, denoted by βh0, βo0 and βq0, respectively, and let Sh0,
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So0 and Sq0 be their covariance estimates. If the Weibull model has smaller

AIC, we set β̂ = (β′q0,0
′,β′q0)′ and Ŝ = diag(Sq0,So0,Sq0); otherwise, we set

β̂ = (0′,β′o0,0
′)′ and Ŝ = diag(Sh0,So0,Sq0).

For ease of posterior sampling, we work with z = (z1, . . . , zJ−1)′ through

the relation ξJj = ezj/(
∑J
k=1 e

zj ) for j = 1, . . . , J , where zJ = 0. Under the
Dirichlet prior (7), the induced prior on z is:

p(z|α) =
Γ (αJ)

Γ (α)J

J∏
j=1

[
ezj∑J
k=1 e

zj

]α
.

The vector z can be updated using adaptive Metropolis-Hastings. Suppose we
are currently in iteration l and have sampled the states z(0), z(1), . . . , z(l−1).
We select an index l0 (e.g., l0 = 5000) for the length of an initial period and
define

Σl =

{
Σ0, l ≤ l0
(2.4)2

J−1 (Cl + 10−10IJ−1) l > l0.

Here Cl is the sample variance of z(0), z(1), . . . , z(l−1), and Σ0 is an initial
diagonal covariance matrix of z, defined so that the variance of zj is 0.16. The
choice of 0.16 is based on extensive simulation studies; other choices (as long
as it is not too small or large) will have little impact on posterior inferences.
We generate z∗ = (z∗1 , . . . , z

∗
J−1)′ from NJ−1(z(l−1),Σl) and accept it with

probability

min

{
1,

L(ξ∗J ,θ,β)
∏J
j=1(ξ∗Jj)

α

L(ξ
(l−1)
J ,θ,β)

∏J
j=1(ξ

(l−1)
Jj )α

}
,

where ξ∗J and ξ
(l−1)
J are defined corresponding to z∗ and z(l−1), respectively.

The centering distribution parameters θ are updated via adaptive Metropolis-
Hastings. At iteration l, each candidate is sampled as θ∗ ∼ N2(θ(l−1),Σl) and
accepted with probability

min

{
1,

L(ξJ ,θ
∗,β)φ2(θ∗|θ0,V0)

L(ξJ ,θ(l−1),β)φ2(θ(l−1)|θ0,V0)

}
.

where φ2(·|θ0,V0) denotes the density of N2(θ0,V0), and Σl is defined simi-

larly as above, but with Σ0 set to be V̂.

The survival model coefficients β ∈ {βo,βh,βq} are updated via adaptive
Metropolis-Hastings as well with proposal β∗ ∼ Np(β(l−1),Σl) and acceptance
probability

min

{
1,

L(ξJ ,θ,β
∗)φp(β

∗|β0,S0)

L(ξJ ,θ,β(l−1))φp(β(l−1)|β0,S0)

}
,

where Σl is defined similarly as above with Σ0 = Ŝ.
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Finally, the precision parameter α is updated via adaptive Metropolis-
Hastings with normal proposal α∗ ∼ N1(α(l−1),Σl) with Σl defined as above
but taking Σ0 = 0.16, and the acceptance probability is

min

{
1,

(α∗)a−1e−bα
∗
Γ (α∗J)Γ (α(l−1))J

∏J
j=1(ξJj)

α∗−1

(α(l−1))a−1e−bα(l−1)Γ (α∗)JΓ (α(l−1)J)
∏J
j=1(ξJj)α

(l−1)−1

}
.

Regarding default choices for hyperparameters, we set a0 = b0 = 1, θ0 = θ̂,
and V0 = 10V̂. Note here we assume a relatively informative prior on θ to
avoid potential instability of MCMC and obviate confounding between Sθ and
the Bernstein polynomial.

3.4 Approximate Bayes factors for model selection

Once the model is fitted via MCMC, the triples {(βmq ,βmo ,βmh )}Mm=1 are
obtained after burnin and thinning. Let BFq, BFo, BFh, BFa, BFy, BFe be
the Bayes factors for testing the AFT, PO, PH, AH, YP and EH assumptions
relative to the full model, respectively. A large-sample approximation to the
Savage-Dickey ratio based on approximate normality is proposed to compute
these Bayes factors (Li et al., 2015, Zhou et al., 2017); see Appendix A of the
online material for details.

The BF for PH relative to the super model is

BFh ≈
N2p(0;mh,Vh)

Np(0;0,S∗0)Np(0;0, 2S∗0)
,

where mh and Vh are the posterior sample mean and variance of (β′q,β
′
o−β′h)′,

respectively. The BF for AFT relative to the super model is

BFq ≈
N2p(0;mq,Vq)

Np(0;0,S∗0)Np(0;0, 2S∗0)
,

where mq and Vq are the posterior sample mean and variance of (β′o,β
′
h−β′q)′,

respectively. The BF for PO relative to the super model is

BFo ≈
N2p(0;mo,Vo)

Np(0;0,S∗0)Np(0;0,S∗0)
,

where mo and Vo are the posterior sample mean and variance of (β′q,β
′
h)′,

respectively. The BF for AH relative to the super model is

BFa ≈
N2p(0;ma,Va)

Np(0;0,S∗0)Np(0;0, 2S∗0)
,

where ma and Va are the posterior sample mean and variance of (β′h,β
′
q+β′o)

′,
respectively. The BF for YP relative to the super model is

BFy ≈
Np(0;my,Vy)

Np(0;0,S∗0)
,
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where my and Vy are the posterior sample mean and variance of βq, respec-
tively. The BF for EH relative to the super model is

BFe ≈
Np(0;me,Ve)

Np(0;0, 3S∗0)
,

where me and Ve are the posterior sample mean and variance of βh−βq−βo,
respectively.

4 Illustrations

4.1 Simulated data

To show that the method correctly picks the right model most of the time,
we generate 500 data sets of size n = 200, 500, and 1000 from the super model
under six scenarios: (1) βq = 0, βo = βh = 1, i.e the PH, (2) βq = βh = 0,
βo = 1, i.e. the PO, (3) βo = 0, βh = βq = 1, i.e. the AFT, (4) βh = 0,
βo = −βq = 1, i.e. the AH, (5) βq = 0, βo = −βh = 1, i.e the YP, and
(6) βh = 1, βo = βq = (0.5, 0.5)′, i.e. the EH. In each case, we consider
three baseline survival functions: lognormal S0(t) = 1 − Φ (log t), mixture
of two lognormals S0(t) = 1 − [0.5Φ ((log t+ 1)/0.5) + 0.5Φ ((log t− 1)/0.5)],
and Weibull S0(t) = 1 − exp{−(0.5t)0.8}. The covariate vector is chosen as

xi = (xi1, xi2) with xi1
iid∼ Bernoulli(0.5) and xi2

iid∼ N(0, 1). Finally, a non-
informative censoring scheme is used, where we apply right censoring to half
of the sample data and interval censoring to the other half. Here the right
censoring times are independently simulated from a Uniform(2, 6) distribution.
For interval censoring, each subject is assumed to have N observation times,

say, O1, O2, . . . , ON , where (N−1) ∼ Poisson(2) and (Ok−Ok−1)|N iid∼ Exp(1)
with O0 = 0, k = 1, . . . , N . A censoring interval has endpoints which are the
two adjacent observation times (possibly 0 or∞) that include the true survival
time. The final data yield around 20% right censored, 40% uncensored, 25%
left censored and 15% interval censored under all settings. Models were fit with
J = 15, a loglogistic TBP and the default priors introduced in Section 3. For
each MCMC run, 5,000 scans were thinned from 50,000 after a burn-in period
of 10,000 iterations. Table 1 reports the proportion (out of 500 replicated data
sets) of times each model is picked. The model picked is the one with the
largest value among BFh, BFo, BFq, BFa, BFy and BFe relative to the super
model.

Table 1: Proportion of times Bayes factor selects each model when
truth is known out of 500 replicated data sets.

Model picked
Baseline n AFT PH PO AH EH YP

True AFT model
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Table 1: Proportion of times Bayes factor selects each model when
truth is known out of 500 replicated data sets.

Model picked
Baseline n AFT PH PO AH EH YP

Lognormal 200 0.918 0.034 0.024 0.000 0.024 0.000
500 0.956 0.000 0.030 0.000 0.014 0.000
1000 0.964 0.000 0.030 0.000 0.004 0.000

Mixture 200 0.970 0.004 0.000 0.000 0.026 0.000
500 0.966 0.000 0.000 0.000 0.034 0.000
1000 0.972 0.000 0.000 0.000 0.028 0.000

Weibull 200 0.432 0.552 0.000 0.000 0.016 0.000
500 0.356 0.618 0.000 0.000 0.024 0.000
1000 0.310 0.640 0.000 0.000 0.005 0.000

True PH model
Lognormal 200 0.030 0.950 0.002 0.000 0.018 0.000

500 0.000 0.982 0.000 0.000 0.018 0.000
1000 0.000 0.980 0.000 0.000 0.020 0.000

Mixture 200 0.000 0.948 0.040 0.000 0.012 0.000
500 0.000 0.986 0.012 0.000 0.002 0.000
1000 0.000 0.992 0.002 0.000 0.002 0.004

Weibull 200 0.414 0.558 0.014 0.000 0.014 0.000
500 0.396 0.524 0.000 0.000 0.080 0.000
1000 0.324 0.526 0.000 0.000 0.150 0.000

True PO model
Lognormal 200 0.878 0.068 0.044 0.000 0.010 0.000

500 0.748 0.006 0.240 0.000 0.006 0.000
1000 0.418 0.000 0.578 0.000 0.004 0.000

Mixture 200 0.002 0.150 0.842 0.000 0.000 0.006
500 0.000 0.012 0.980 0.000 0.000 0.008
1000 0.000 0.000 0.998 0.000 0.000 0.002

Weibull 200 0.816 0.024 0.146 0.000 0.014 0.000
500 0.000 0.012 0.980 0.000 0.000 0.006
1000 0.062 0.002 0.930 0.000 0.000 0.006

True AH model
Lognormal 200 0.008 0.000 0.000 0.982 0.008 0.002

500 0.000 0.000 0.000 0.982 0.014 0.004
1000 0.000 0.000 0.000 0.974 0.020 0.006

Mixture 200 0.000 0.000 0.000 0.968 0.032 0.000
500 0.000 0.000 0.000 0.946 0.054 0.000
1000 0.000 0.000 0.000 0.860 0.140 0.000

Weibull 200 0.388 0.062 0.000 0.544 0.006 0.000
500 0.546 0.176 0.004 0.272 0.002 0.000
1000 0.500 0.376 0.008 0.114 0.002 0.000

True EH model



Bayes Factors For Six Common Survival Models 13

Table 1: Proportion of times Bayes factor selects each model when
truth is known out of 500 replicated data sets.

Model picked
Baseline n AFT PH PO AH EH YP

Lognormal 200 0.522 0.358 0.026 0.000 0.094 0.000
500 0.288 0.134 0.016 0.000 0.562 0.000
1000 0.040 0.004 0.008 0.000 0.940 0.006

Mixture 200 0.092 0.026 0.030 0.000 0.852 0.000
500 0.000 0.000 0.000 0.000 1.000 0.000
1000 0.000 0.000 0.000 0.000 1.000 0.000

Weibull 200 0.390 0.582 0.008 0.002 0.018 0.000
500 0.338 0.624 0.002 0.000 0.036 0.000
1000 0.356 0.550 0.000 0.000 0.092 0.002

True YP model
Lognormal 200 0.000 0.000 0.000 0.972 0.024 0.004

500 0.000 0.000 0.000 0.848 0.076 0.076
1000 0.000 0.000 0.000 0.534 0.182 0.284

Mixture 200 0.000 0.000 0.000 0.024 0.004 0.972
500 0.000 0.000 0.000 0.000 0.002 0.998
1000 0.000 0.000 0.000 0.000 0.000 1.000

Weibull 200 0.000 0.000 0.000 0.046 0.700 0.254
500 0.000 0.000 0.000 0.000 0.280 0.720
1000 0.000 0.000 0.000 0.000 0.052 0.948

When the baseline is the mixture of lognormal distributions, our method
works very well even for the smallest sample size n = 200; for larger sample
sizes n = 500 and n = 1000 the correct classification rates are all approaching
one except for the AH model. When AH is the truth, the proportion picking
AH decreases (from 97% to 86%) as n increases while the proportion choosing
EH increases. To confirm this observation, we also tried the size of n = 2000,
and the proportions of choosing AH and EH are 57% and 43%, respectively. In
other words, as the sample size increases, our method tends to favor the more
complex EH model against the special case of AH. Since EH includes AH as
a special case the choice is not incorrect, but is more complex than necessary.

When the baseline is lognormal, our method also works well for most cases
except when the true model is PO or YP. For instance, when PO is the truth
with n = 1000 the method has a 58% chance of picking PO and a 42% chance
of choosing AFT. However, picking AFT does not mean that a wrong model
is picked if one notices that lognormal can be well approximated by loglogistic
and loglogistic AFT is also a PO model. When lognormal YP is the truth with
n = 1000, our method only has a 28% chance to pick YP with the remaining
% allocated to AH or EH. In this case, we also tried the size of n = 2000,
resulting in AH, EH or YP being picked with proportions being 12%, 35% and
53%, respectively. One reason to explain such a low correct classification rate
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is that lognormal YP considered here could be very close to a AH and/or a EH
model; the baseline distribution plays a large role in how “close” competing
semiparametric models actually are and several models may predict equally
well. In addition, when lognormal EH is the truth, we need a sample size of
n = 1000 or larger to identify the correct model. Otherwise, our method tends
to select the simpler models AFT or PH, both special cases of EH.

To see how our method performs when the baseline is Weibull, first note
that the Weibull AFT, Weibull PH and Weibull AH are all equivalent models,
and they are also special cases of EH. Keeping that in mind, we can see that
our method has overall low misclassification proportions across most scenarios
with the following several exceptions. First, when EH is the truth, both AFT
and PH have high chance to be picked; this can be explained by the fact
that simulation scenario (6) is not only an EH but also an AFT and a PH.
Second, when PO or YP is the truth, we need sample size n = 1000 or larger
to identify the correct model. When sample size is small like n = 200 under
true PO (or YP), our method picks AFT (or EH) with 82% (or 70%) chance.
This may be because the estimated baseline function hardly deviates from the
TBP’s centering loglogistic distribution with the small sample size leading to
the fitted model close to an AFT (or EH).

To study the impact of the informative g-prior, we also compared two cases
M = 10 and M = 50 for part of the simulation scenarios in Appendix C.1
of the online material, and the two different values yielded almost identical
results.

The proposed super model can also be used for survival function estimates
when all six Bayes factors are less than 1, i.e., none of the six models fit
the data better than the super model. We next demonstrate its finite sample
performance. We generate 500 data sets of size n = 500 from the super model
with βh = βo = βq = 1 which is none of the six models. All other simulation
settings are the same as before. Table 2 shows the posterior inference results for
the regression coefficients. We can see that all coefficient estimates are nearly
unbiased with the coverage probabilities around the nominal level 95% when
the true baseline is mixture of two lognormals. However, these encouraging
results do not hold when the baseline survival function is lognormal or Weibull.
This is not surprising, since the super model with Weibull baseline becomes
non-identifiable if one notices that the AFT, PH and AH models with Weibull
baselines are all equivalent with appropriate reparametrizations. The same
argument also applies to the lognormal baseline, since lognormal can be well
approximated with a scaled loglogistic and loglogistic AFT is equivalent to
loglogistic PO. Figure 1 presents the average, across the 500 MC replicates,
of fitted (posterior means over a grid of time points) survival functions when
x = (0, 0)′ and x = (0, 1)′; the super model capably estimates complex (here
bimodal) survival curves very accurately even for the lognormal and Weibull
baselines. Therefore, the super model can still be used for survival/density
estimates, even though interpretation of the three sets of regression coefficients
is challenging.
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Table 2 Simulated data when the super model is the truth and sample size is n = 500.
Averaged bias (BIAS) and posterior standard deviation (PSD) of each point estimate, stan-
dard deviation (across 500 MC replicates) of the point estimate (SD-Est), and coverage
probability (CP) for the 95% credible interval.

Parameter BIAS PSD SD-Est CP

Lognormal baseline
βh,1 = 1 -0.021 0.882 0.397 0.996
βh,2 = 1 0.014 0.447 0.238 0.990
βo,1 = 1 0.079 1.504 0.624 0.990
βo,2 = 1 0.059 0.753 0.391 0.990
βq,1 = 1 -0.056 0.843 0.357 0.988
βq,2 = 1 -0.042 0.417 0.222 0.988

Mixture baseline
βh,1 = 1 0.062 0.305 0.259 0.972
βh,2 = 1 0.079 0.189 0.171 0.954
βo,1 = 1 -0.027 0.315 0.302 0.962
βo,2 = 1 -0.020 0.194 0.189 0.952
βq,1 = 1 0.003 0.109 0.099 0.974
βq,2 = 1 -0.003 0.066 0.065 0.948

Weibull baseline
βh,1 = 1 -0.093 0.780 0.465 0.990
βh,2 = 1 -0.098 0.444 0.275 0.988
βo,1 = 1 0.156 0.921 0.531 0.990
βo,2 = 1 0.175 0.491 0.304 0.980
βq,1 = 1 -0.160 0.943 0.541 0.990
βq,2 = 1 -0.193 0.504 0.322 0.976

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

(a)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

(b)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

(c)

Fig. 1 Simulated data when true mode is none of the six models and sample size is n = 500.
Mean, across the 500 MC replicates, of the posterior mean of the survival functions when
x = (0, 0)′ (upper lines) and x = (0, 1)′ (lower lines). The true curves are represented by
continuous lines and the fitted curves are represented by dashed lines.
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4.2 Veterans Administration Lung Cancer Trial

The data considered is the well-known Veterans Administration lung cancer
trial (Prentice, 1973), which has been incorporated into MASS package in R.
As in Cheng et al. (1995), Murphy et al. (1997), Yang and Prentice (1999),
and Hanson (2006) we consider a subgroup of n = 97 patients with no prior
therapy. Two covariates considered are performance status, a measure that is a
multiple of 10 and ranges from 0 to 100, and the tumor type, a factor with four
levels (large=1, adeno=2, small=3, squamous=4). Six of the 97 survival times
are censored. Cheng et al. (1995) used the transformation model; Murphy et al.
(1997) and Yang and Prentice (1999) considered the PO model; Hanson (2006)
considered the AFT, PH and PO model.

The proposed super model is fit with J = 15, a Weibull TBP, and the
hyperparameter settings in Section 3.3; see Appendix B.1 of the online material
for R commands. The Bayes factors for testing AFT, PH, PO, AH, EH and
YP vs. the super model are 115, 27, 97, 0.25, 123, and 11, respectively.

The AFT, PH, PO, EH, and YP fit better than the super model; the EH,
AFT and PO models fit about the same and are about four times better than
PH. The LPML for the super model compares favorably to those observed
in Hanson and Yang (2007), most notably the log-logistic regression model
had the best LPML of about −509. Since the parametric log-logistic model
has both PO and AFT properties, seeing that these semiparametric models
are favored about the same makes sense. Other centering distributions gave
roughly the same results, log-logistic gave −509.6 and lognormal gave −511.5.

Since the EH model has the highest Bayes factor, the super model can be
used as a model in its own for prediction. Figure 2 presents the predictive
survival densities for squamous with score equal to 40, 60 and 80; the code is
available in Appendix B.1 of the online material. These plots can be compared
to Figure 1 in Hanson and Yang (2007), which have much rougher densities.
The Polya tree encourages spikiness in densities, whereas the transformed
Bernstein allows multimodality but tends to smooth over spurious spikes.

Notice that the BF comparing EH to AFT is 123.0/115.1 ≈ 1.07. Thus the
AFT model may be considered adequate and can be fitted parametrically via
survreg or semiparametrically by the lss package in R. Other R packages for
fitting semiparametric AFT models are reviewed in Zhou and Hanson (2015)
including spBayesSurv.

4.3 Breast Cancer Study

Beadle et.al (Beadle et al., 1984) reported a retrospective study to compare
the cosmetic effects of radiotherapy alone versus radiotherapy and adjuvant
chemotherapy on 94 women with early breast cancer. There are 46 patients in
radiation only group and 48 patients in radiation plus chemotherapy group.
Patients were observed initially every 46 months, but, as their recovery pro-
gressed, the interval between visits lengthened. The event of interest was the
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Fig. 2 Preditive densities for squamous, score=40, 60, 80.

time to first appearance of moderate or severe breast retraction. There are
5.3% of the women who were left censored, 55.8% were interval censored and
38.9% were right censored. The dataset is available in the R package KMsurv.

The proposed super model is fit with J = 15, a Weibull TBP and the
hyperparameter settings in Section 3.3; see Appendix B.2 of the online material
for R commands. The Bayes factors for testing AFT, PH, PO, AH, EH and
YP vs. the super model are 18, 32, 4, 24, 8 and 8, respectively. All models fit
better than the super model; the PH and AH models fit about the same and are
about seven times better than PO. In choosing between PH and AH, log-log
survival plots can help. Figure 3(a) shows crossing lines based on Turnbull’s
estimator (Turnbull, 1976), suggesting that the AH may be more appropriate
for these data. In fact, the estimated survival curves in Figure 3(b) from the
super model show crossing survival, which is disallowed under PH.

5 Discussion

We proposed a new super model which includes PH, PO, AFT, AH, EH
and YP models as specials cases. Bayes factors have been developed under
the transformed Bernstein polynomial prior. Simulation studies demonstrate
the appropriate model can be selected based on this approach; the proposed
model appears to work especially well for choosing among the mostly widely-
used PH, PO, and AFT models. The R package spBayesSurv implements the
proposed method directly as demonstrated via two real data analyses.
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Fig. 3 Breast Cancer Data

Note that the AFT, PH and AH models are equivalent under the Weibull
distribution. The AFT and PO models are equivalent under the loglogistic
distribution. The EH model includes PH and AH as special cases, and the
YP model includes PH and PO as special cases. In practice, the small sample
size may cause a lot of uncertainty. If we look at the Table 1 closely for the
sample size of n = 200, we can see that the proportions that the “correct”
model (including all equivalent models) is picked are all nearly 95% or above
when the true model is AFT, PH, PO or AH. When EH (or YP) is the truth
with small sample size, our method tends to select a simpler model (one of
AFT, PH, PO or AH) that is closest to EH (or YP). Therefore, for small
n, we recommend choosing a model only among AFT, PH, PO and AH; the
EH or YP models may be poorly identified in such cases depending on the
true baseline survival function. Additionally, in smaller sample sizes several
models may fit similarly; in such cases a final model can be chosen based on
the most suitable assumption for answering clinical questions of interest (e.g.
proportional hazards), interpretability (e.g. hazard ratios) and simplicity.

When none of the six simpler models is picked, the proposed super model
can be used for accurate survival estimates although the regression coefficients
do not have useful interpretation. Other alternatives are to consider a general
linear transformation model (Zeng and Lin, 2007), or Bayesian nonparametric
model, e.g. De Iorio et al. (2009); however, just as in the proposed super model,
there is no easy interpretation of model coefficients. The latter model can be
fit using the function anovaDDP in spBayesSurv.

The approach we have taken is to formally nest commonly used semi-
parametric models into a large, encompassing ‘super model.’ An alternative
approach is parametric transformations. In terms of cumulative hazards Hx(·)
and baseline cumulative hazard H0(·), semiparametric linear transformation
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models can be written as

Hx(t) = G{eβ
′xH0(t)}.

Zeng and Lin (2007) note that G(x) = 1
ρ [(1 + x)ρ − 1] gives PH when ρ = 1

or PO as ρ → 0+; also G(x) = 1
ρ log(1 + ρx) gives PO when ρ = 1 or PH as

ρ→ 0+. The latter model is equivalent to the generalized odds rate model of
Scharfstein et al. (1998). Yin and Ibrahim (2005) instead consider

1
ρ [hx(t)ρ − 1] = 1

ρ [h0(t)ρ − 1] + x′β.

Here, ρ = 1 gives the additive hazards model whereas ρ → 0+ gives PH. It
has been generally noted by these authors that estimation of ρ is problematic
and inference proceeds typically by fitting several values of ρ and choosing the
value closest to one or zero that maximizes a likelihood or posterior density. In
all of these models one of two common models is obtained on the boundary of
the parameter space, i.e. ρ → 0+, which presents unique challenges to model
selection and estimation.
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