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Summary: The global emergence of Batrachochytrium dendrobatidis (Bd) has caused the extinction of hundreds

of amphibian species worldwide. It has become increasingly important to be able to precisely predict time to Bd

arrival in a population. The data analyzed herein present a unique challenge in terms of modeling because there

is a strong spatial component to Bd arrival time and the traditional proportional hazards assumption is grossly

violated. To address these concerns, we develop a novel marginal Bayesian nonparametric survival model for spatially

correlated right-censored data. This class of models assumes that the logarithm of survival times marginally follow

a mixture of normal densities with a linear dependent Dirichlet process prior as the random mixing measure, and

their joint distribution is induced by a Gaussian copula model with a spatial correlation structure. To invert high-

dimensional spatial correlation matrices, we adopt a full-scale approximation that can capture both large- and small-

scale spatial dependence. An efficient Markov chain Monte Carlo algorithm with delayed rejection is proposed for

posterior computation, and an R package spBayesSurv is provided to fit the model. This approach is first evaluated

through simulations, then applied to threatened frog populations in Sequoia-Kings Canyon National Park.
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1. Introduction

The Earth is currently experiencing the most severe mass extinction of species since the

dinosaurs died off 65 million years ago. Scientists estimate that we are currently losing on

the order of up to 50,000 species per year, 1,000 to 10,000 times greater than the fossil

record (Chivian and Bernstein, 2008). The current mass extinction is almost entirely due to

humankind in the form of destruction of natural habitats, but with disease being increasingly

recognized as another important driver. The global emergence of Batrachochytrium dendro-

batidis (Bd), a fungus that can kill frogs within a few weeks, has caused the extinction of

hundreds of amphibian species worldwide (Wake and Vredenburg, 2008), including the recent

rapid local extinction of many mountain yellow-legged frog populations in the Sierra Nevada

mountains of California (Rachowicz et al., 2006; Vredenburg et al., 2010). These impacts

of Bd have been described as “...the most spectacular loss of vertebrate biodiversity due to

disease in recorded history...” (Skerratt et al., 2007). Once the most common amphibian in

the region, mountain yellow-legged frogs now inhabit less than one-tenth of their range of

one hundred years ago and continue to disappear at an alarming rate.

The mountain yellow-legged frog is a species complex of the southern mountain yellow-

legged frog Rana muscosa and the Sierra Nevada yellow-legged frog Rana sierrae (Vreden-

burg et al., 2007). In part due to Bd-caused declines, these species were recently listed

as “endangered” under the U.S. Endangered Species Act (Federal Register 2014). Bd often

spreads in wavelike patterns (Cheng et al., 2011; Lips et al., 2008). One of the authors

(Knapp) collected data over a 12-year period by hiking large areas of Sequoia and Kings

Canyon National Parks, one of the few areas in the Sierra Nevada that still contained some

Bd-negative frog populations at the beginning of this study (Vredenburg et al., 2010). Bd-

negative frog populations were discovered during the first park-wide survey of all suitable
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habitats (Knapp et al., 2003), and were revisited, typically every 1-2 years, over the study

period to determine their Bd status over time.

It has become increasingly important to be able to predict when Bd is likely to arrive in

a frog population, considering that interventions may be useful to prevent the extinction of

frog populations following the Bd arrival (Vredenburg et al., 2010). We model the Bd arrival

time of frog populations from discovery given two baseline measures of Bd proximity: (i)

“bdwater,” indicating whether Bd was present during the previous year (= 1) or not (= 0)

in the watershed containing the frog population of interest, and (ii) “bddist,” indicating the

linear distance to the nearest Bd-positive location during the previous year. Once Bd arrived

at a site, this site was assumed to always be Bd-positive in subsequent years (Vredenburg

et al., 2010). The location was recorded as Universal Transverse Mercator (x, y)–coordinates

in meters for each frog population. These data provide a unique challenge in terms of

modeling: there is a strong spatial component to Bd arrival times across populations, and

the proportional hazards assumption is rather severely violated.

Traditionally, most survival models incorporating spatial information have been semi-

parametric, conditional (so-called frailty) models; these include conditionally proportional

hazards models (Banerjee et al., 2003; Hennerfeind et al., 2006), proportional odds models

(Banerjee and Dey, 2005; Zhao et al., 2009), and accelerated failure time models (Zhao et al.,

2009; Wang et al., 2012). Any of these models is preferable if they actually fit the data, as such

semiparametric structure allows for easy conditional interpretation in terms of hazard ratios,

odds ratios, or acceleration factors, respectively. However, these models impose constraints

on survival densities. For example, both proportional hazards and accelerated failure time

models induce stochastically ordered survival times for populations with different covariates

or frailties. For this reason, if the semiparametric structure is not appropriate, the addition

of frailties may not improve model fit, or can even make it worse by adding noise. Instead of
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incorporating a spatial frailty term, Li and Lin (2006) proposed a marginal survival model,

which they termed a semiparametric normal transformation model, where survival times

are assumed to marginally follow the proportional hazards (PH) model and their joint

distribution is specified by a Gaussian copula model with a spatial correlation structure.

One advantage of their model over frailty models is that the regression coefficients have

population-level interpretations. However, their model imposes constraints so that survival

curves from different covariate levels are not allowed to cross, which is unrealistic in many

practical applications (see De Iorio et al., 2009), including the mountain yellow-legged frog

illustration used in the current study (e.g. see Kaplan-Meier estimates in Web Appendix F).

For these data, a more flexible survival model is needed to quantify the risk factors associated

with the Bd arrival time of frog populations while taking spatial correlation into account.

Flexible Bayesian nonparametric modeling techniques have been successfully developed for

handling complex survival data that traditional semiparametric survival models fail to fit.

One appealing feature about nonparametric approaches for estimating survival densities is

their ability to avoid unrealistic constraints on how the variance, skewness, shape and even

modality change with covariates. The linear dependent Dirichlet process mixture model

(De Iorio et al., 2009; Jara et al., 2010, 2011), essentially a countable mixture of accelerated

failure time models, provides a flexible way to capture crossing hazard and survival curves.

However, it is unclear how to extend these Bayesian nonparametric models to a geostatistical

setting for the analysis of spatially correlated survival data, and there has been virtually no

related literature so far.

In this article, we develop a marginal Bayesian nonparametric spatial survival model for the

analysis of the Bd arrival time of yellow-legged frog populations given the baseline covariates

bdwater and bddist. This model assumes that the logarithm of survival times marginally

follow a linear dependent Dirichlet process mixture (LDDPM) model, and specifies their
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joint distribution via a Gaussian copula model. Two major features of the proposal are

that the resulting survival curves are allowed to cross, or not, as dictated by the data,

and that the inclusion of spatial information improves the prediction of Bd arrival time

dramatically. To invert the high-dimensional spatial correlation matrices, we adopt a full

scale approximation that can capture both large- and small-scale spatial dependence (Sang

and Huang, 2012). To compare our proposal with the semiparametric normal transformation

model proposed by Li and Lin (2006), we also present a Bayesian version of their model,

denoted as a marginal PH spatial model. We develop efficient Markov chain Monte Carlo

(MCMC) algorithms for both our model and the marginal PH spatial model. The analysis

of the mountain yellow-legged frog data shows that our proposed spatial LDDPM model

provides improvement over most traditional models, including the non-spatial LDDPM, PH,

PH augmented with spatial frailties, and marginal PH spatial. For ease of implementa-

tion, we also developed an R package spBayesSurv, which is available for downloading

at http://cran.r-project.org/web/packages/spBayesSurv, that can fit our proposed

spatial LDDPM, the non-spatial LDDPM, PH, and the marginal PH spatial models.

The rest of this article is organized as follows. Section 2 describes the marginal LDDPM

spatial survival model. Section 3 provides a recipe for efficient MCMC inference, discusses

prediction, and proposes a cross-validated predictive model comparison criterion. Section 4

discusses simulation results, shows how ignoring spatial correlation grossly can bias infer-

ences, and validates that our model selection criterion works well. Section 5 presents the

analysis of the time to Bd arrival data, and shows how posterior inference can be interpreted

and put to practical use. The paper concludes with concluding remarks in Section 6.
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2. Marginal LDDPM Spatial Survival Model

2.1 Model Specification

Suppose right-censored spatial survival data {(toi , δi,xi, si) : i = 1, . . . , n} are collected in

a spatial region of interest D, where toi is a recorded event time, δi is a censoring indicator

equalling 1 if toi is the observed event time and equalling 0 if the event time is right-censored at

toi , xi is a p-dimensional vector of covariates including the intercept, and si records the spatial

location. We denote by ti the latent true (unobserved if δi = 0) event time corresponding to

toi , and then the relationship between δi and ti can be described by δi = I(ti = toi ), where

δi = 0 implies ti > toi . Since event times are all positive, it remains appealing to work on

the logarithms of event times, i.e. yi = log(ti), yoi = log(toi ). In addition, we assume an

independent censoring scheme; that is, the event and censoring times are independent given

the observed covariates.

We assume that yi|xi marginally follows a linear dependent Dirichlet process mixture model

of De Iorio et al. (2009),

Fxi
(y|G) =

∫
Φ

(
y − x′iβ

σ

)
dG{β, σ2}, (1)

where Φ(·) is the cumulative distribution function (cdf) of the standard normal, andG follows

the Dirichlet Process (DP) prior (Ferguson, 1973) with concentration parameter α > 0 and

base measure G0 on Rp × R+, denoted by G ∼ DP (α,G0). This Bayesian nonparametric

model treats the conditional distribution Fx as a function-valued parameter and allows its

variance, skewness, modality and other features to flexibly vary with the x covariates. See

Pati et al. (2013) for the sufficient conditions for posterior consistency. Note that there is no

clear approach to incorporate simple spatial frailties into this model, as there is a countable

number of linear predictors.

To incorporate the spatial correlation among the event times, we first define a residual
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process z(si), after adjusting for covariate effects, as

z(si) = Φ−1 {Fxi
(yi|G)} , i = 1, . . . , n. (2)

Note that z(si) follows the standard normal distribution, providing a natural way of mod-

eling spatial dependence. Specifically, we assume that z = (z(s1), . . . , z(sn))′ arises from

a zero-mean Gaussian process (GP) {z(s) : s ∈ D} with a valid correlation function

Cθ(s, s′); that is, z follows a multivariate Gaussian distribution as z ∼ Nn(0,Cθ), where

Cθ = [Cθ(si, sj)]
n
i,j=1 is the n × n correlation matrix depending on a parameter vector

θ. To allow for a nugget effect, we consider Cθ(si, sj) = θ1ρ(si, sj) + (1 − θ1)I(si = sj),

where ρ(·, ·) is a valid correlation function, and θ1 ∈ [0, 1], also known as a “partial sill” in

Waller and Gotway (2004), is a scale parameter measuring a local maximum correlation.

The simplest parameterization for the correlation function ρ(·, ·) is an isotropic one, where

the spatial correlation is assumed to be a function solely of the Euclidean distance dij

between locations si and sj. In this paper, we consider the exponential correlation function

ρ(s, s′) = exp {−θ2||s− s′||}, where θ2 controls the spatial decay over distance. Other choices

such as the spherical, Gaussian and Matérn correlation functions are also possible.

The above model specification is completely equivalent to Gaussian copula modeling (Song,

2000). In fact we have modeled the joint distribution of y = (y1, . . . , yn) as a function of

its marginal cdf, that is, y ∼ Φn (Φ−1{Fx1(y1|G)}, . . . ,Φ−1{Fxn(yn|G)}; Cθ), where Φn(·; Σ)

is the cdf of an n-dimensional normal with mean zero and covariance matrix Σ. Following

Song (2000), the likelihood function based upon the complete data {(yi,xi, si), i = 1, . . . , n}

is

L = |Cθ|−1/2exp

{
−1

2
z′(C−1

θ − In)z

} n∏
i=1

fxi
(yi|G), (3)

where In is the n×n identity matrix, and fxi
(yi|G) is the density function corresponding to

Fxi
(yi|G).
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2.2 Prior Specification and Hierarchical Modeling

For the DP prior G ∼ DP (α,G0), we define the base measure G0 through independent

priors Np(β|µ,Σ) and Ga(σ−2|νa, νb). Here, Np(·|µ,Σ) and Ga(·|a, b) denote a p-dimensional

normal distribution with mean µ and covariance matrix Σ, and a gamma distribution with

shape a and rate b, respectively. Note that it is critical to select an appropriate prior for the

concentration parameter α, since its value controls the number of distinct components to

which the data points are allocated. We assume a Ga(α|a0, b0) prior for α, which has been

widely used by many researchers because of its tractability. As for the correlation parameters

θ = (θ1, θ2), they are typically not consistently estimable for a wide range of correlation

functions, as demonstrated by Zhang (2004). This implies that increasing sample size does not

necessarily obliterate the priors’ impact, and thus weakly informative priors may be desirable

to help identify the parameters θ, say, a Ga(θ1|θ1a, θ1b) for θ1 and a Ga(θ2|θ2a, θ2b) for θ2 with

hyperparameters θ0 = (θ1a, θ1b, θ2a, θ2b) being carefully choosen. Finally, we specify conjugate

hyperpriors on µ and Σ−1 using a normal Np(µ|m0,S0) and a Wishart Wp ((κ0Σ0)−1, κ0),

respectively, where the Wishart has mean Σ−1
0 and degrees of freedom κ0.

Following de Carvalho et al. (2013), we suggest reasonable default hyperpriors as follows:

a0 = b0 = 2, νa = 3, νb = σ̂2, θ0 = 1, m0 = β̂, S0 = Σ̂, Σ0 = 30Σ̂, and κ0 = 7, where

β̂ and σ̂2 are the maximum likelihood estimates of β and σ2 from fitting the log-normal

accelerated failure time model log(ti) = x′iβ + σεi, εi ∼ N(0, 1), and Σ̂ is the asymptotic

covariance estimate for β̂.

For ease of hierarchical modeling, we express the DP prior G in the stick-breaking form

(Sethuraman, 1994) as

G =
∞∑
k=1

wkδ(βk,σ
2
k), wk = Vk

∏
j<k

(1− Vj), (4)

where δa is a Dirac probability measure concentrated at a, Vk
iid∼ Beta(1, α) and (βk, σ

2
k)

iid∼ G0

are mutually independent for k = 1, . . . ,∞. In practical implementations, either fixed
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(Ishwaran and James, 2001) or random stopping (Papaspiliopoulos and Roberts, 2008)

approximation procedures of the infinite sum representation (4) can be considered. In this

paper, we use the truncation approximation, replacing G with GN =
∑N

k=1 wkδ(βk,σ
2
k), with

N being pre-specified, where wks result from a truncated version of the stick-breaking

construction: w1 = V1, wk = Vk
∏k−1

j=1(1−Vj), k = 2, . . . , N, VN = 1. The truncation level N

can be determined by considering the properties of the higher-order wk values in the infinite

sum representation (4), i.e. UN =
∑∞

k=N+1wk. Ishwaran and Zarepour (2000) demonstrated

that E(UN |α) = αN/(1 + α)N and Var(UN |α) = αN/(2 + α)N − α2N/(1 + α)2N . Then for

any given truncation level N , we can approximate these expressions by averaging over the

gamma prior for α. For example, setting N = 10 and placing Ga(2, 2) on α in our simulation

study will result in E(UN) ≈ 0.0055 and Var(UN) ≈ 0.0002, which is more than adequate

for data analyses.

In order to determine which component the ith data point is allocated, we introduce

configuration variables Ki. Then the hierarchical model for the data, together with the

augmented latent true event-times, can be written as follows:

yi|B,σ2,K ∼ N(x′iβKi
, σ2

Ki
)

z(si) = Φ−1

{
N∑
k=1

wkΦ

(
yi − x′iβk

σk

)}

(z(s1), . . . , z(sn))′|θ ∼ Nn(0,Cθ)

P (Ki = k|V) = wk, k = 1, . . . , N

(Vk|α)
iid∼ Beta(1, α), k = 1, . . . , N − 1

(βk, σ
−2
k )|µ,Σ iid∼ Np(µ,Σ)×Ga(νa, νb)

α ∼ Γ(a0, b0)

(θ1, θ2) ∼ Beta(θ1a, θ1b)×Ga(θ2a, θ2b)

(µ,Σ−1) ∼ Np(m0,S0)×Wp

(
(κ0Σ0)−1, κ0

)

(5)
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where B = (β′1, . . . ,β
′
N), σ2 = (σ2

1, . . . , σ
2
N), K = (K1, . . . , Kn), and V = (V1, . . . , VN).

3. Posterior Inference

3.1 MCMC Sampling

We develop an efficient MCMC algorithm for posterior sampling from the hierarchical model

representation (5). The full conditionals are straightforward to derive, but most of them are

not recognizable due to the incorporation of spatial dependence. A complete description and

derivation of the updating steps is available in Web Appendix A . The posterior samples for

the model parameters are used for all inferences of interest.

Let Ω = (K,y,B,σ2,V, α,θ) denote collectively the model parameters to be updated.

Note that the likelihood function involves the inversion and determinant calculation of a

very large global correlation matrix Cθ and these matrix operations have to be repeated

for every MCMC iteration. For large values of the sample size n, e.g., n ≥ 500, we suggest

replacing Cθ with C†θ based on the full scale approximation (FSA) approach as described in

Web Appendix B. Conditional on all other parameters, Ki is sampled from a multinomial

distribution. For updating yi, βk, σ2
k and Vk, we notice that the full conditional for each is

proportional to a recognizable density multiplied by a common part exp
{
−1

2
z′(C−1

θ − In)z
}
.

Thus we use Metropolis-Hastings (M-H) with independent proposals, where each proposal is

based on the recognizable density. However, we observed for this inititial MCMC scheme that

often some βk got “stuck” for a long period, leading to poor MCMC mixing. As a remedy,

we found that delayed rejection (Tierney and Mira, 1999) works very well. Upon a rejection

in the M-H, instead of retaining the same position, a second-stage proposal corresponding to

a random walk is proposed. The precision parameter α, and hyper-parameters (µ,Σ−1) are

updated from their conjugate full conditionals. Finally, to update the correlation parameters
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θ, we first take transformations ϑ = (ϑ1, ϑ2)′ with ϑ1 = log
(

θ1
1−θ1

)
and ϑ2 = log(θ2), and

then update ϑ using adaptive Metropolis-Hastings algorithms (Haario et al., 2001).

Given a set of posterior samples {Ω(l), l = 1, . . . , L}, the marginal conditional density of

log event time y given the covariates x is estimated by

f̂x(y) =
1

L

L∑
l=1

N∑
k=1

w
(l)
k

1

σ
(l)
k

φ

(
y − x′β

(l)
k

σ
(l)
k

)
, (6)

where φ(·) is the density of the standard normal. The marginal conditional survival and

hazard functions can be estimated similarly. Then all the marginal density, survival and

hazard functions of an event time t = exp{y} given x can be easily obtained. An R package

spBayesSurv accompanying this paper is provided to implement the MCMC algorithm and

plot the estimated curves; see Web Appendix G for sample R code.

3.2 Spatial Prediction

In geostatistics, one major interest is predicting the survival t0 at a new location s0 with

associated covariate values x0. Given the parameters Ω, by noting that z ∼ Nn(0,Cθ),

we can easily obtain that z(s0) ∼ N(µ(s0), τ 2(s0)) with µ(s0) = h(s0)′C−1
θ z and τ 2(s0) =

1− h(s0)′C−1
θ h(s0), where h(s0) = [θ1ρ(s0, si)]

n
i=1 is an n× 1 vector. Note that both Cθ and

ρ would be replaced by C†θ and ρ† respectively if the FSA is used. Based on the definition

of z(·) in equation (2) and the N -level truncation of G, we have

z(s0) = Φ−1

{
N∑
k=1

wkΦ

(
log t0 − x′0βk

σk

)}
. (7)

It follows that the predictive density of t0 is given by

f(t|Ω,x0, s0) =
1

t · τ(s0)
φ

(
z(s0)− µ(s0)

τ(s0)

)

×

∑N
k=1wk

1
σk
φ
(

log t−x′
0βk

σk

)
φ(z(s0))

.

(8)

Given a set of posterior samples {Ω(l), l = 1, . . . , L} obtained from Section 3.1, we first draw

z(l)(s0) from N(µ(s0), τ 2(s0)) for l = 1, . . . , L, and then make the transformation according

to (7) to obtain a sample of predictive event-times {t(l)(s0), l = 1, . . . , L} at the new location
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s0. The final predicted value of t0 can be either the mean or median of t(l)(s0)s. In practice,

it is difficult to observe all the covariates at the whole study region D, so it is not practically

feasible to create a map for predictive event times. Alternatively, we may show a spatial map

for the residual process, which can be interpreted in a manner similar to the spatial frailties

in conditional survival models; that is, the higher the z(s) is, the larger the event time y(s)

would be on average. Note that the predictive density of t(s0) is simply (8) averaged over the

MCMC iterates. It is worth highlighting here that (8) is different from the truncated version

of the marginal density in (1). This is due to the fact that the event-times are spatially

correlated so that the prediction at a new location will borrow information from locations

where the data have been collected. On the other hand, if we assume there is no spatial

correlation, i.e. θ1 = 0, it is easy to see that the predictive density in (8) reduces to the

N -level truncation version of (1).

3.3 Model comparison

To compare the predictive ability of competing models, we consider the conditional predictive

ordinate (CPO) statistic as suggested by Geisser and Eddy (1979). Let D−i denote the

observed data excluding the ith data point. For a given model, the CPO statistic for the

ith observation is defined as CPOi = f (toi |D−i)
δi S (toi |D−i)

1−δi , where f and S denote the

marginal posterior predictive density and survival functions of toi given D−i respectively. A

higher value of CPOi under one model implies a better fit of that model to the ith observation.

Let t = (t1, . . . , tn) be the vector of latent true survival times and t−i be the corresponding

vector with the ith element removed. According to the hierarchical model in (5), given all

the model parameters Θ = (B,σ2,V,θ), we show that the CPO of Gelfand and Dey (1994)

is generalized to

CPOi =

(
E(t,Θ|D)

[
1

f(toi |t−i,Θ)δiS(toi |t−i,Θ)1−δi

])−1

. (9)
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See Web Appendix C for its derivation and the expressions of f(toi |t−i,Θ) and S(toi |t−i,Θ).

To give an aggregate summary measure of a model’s predictive ability, we define the log

pseudo marginal likelihood (LPML) as LPML =
∑n

i=1 log(CPOi). The LPML is a cross-

validated predictive measure: the larger a model’s LPML is, the better predictive ability the

model has. From (9), one can easily compute LPML from the MCMC output.

4. Simulations

We conduct a simulation study to illustrate the proposed model (LDDPM-spatial) and assess

its performance. We also compare it with the Bayesian version of Li and Lin (2006) (PH-

spatial, see Web Appendix D) and the model by De Iorio et al. (2009) (LDDPM-ind). All

analyses can be run in R using the package spBayesSurv.

We randomly select 400 locations over a spatial region [0, 40] × [0, 100] (mirroring from

the frog data) and hold out 100 of them for assessing the predictive performance, yielding

a total sample of n = 300 subjects for estimation. The log event times y(s) = log t(s)

at these 400 locations are simulated from a mixture model f(y|x) = 0.4N(3.5 + 0.5x, 12) +

0.6N(2.5−x, 0.52) with the spatial dependence described in Section 2.1, where x is generated

independently from a uniform distribution over (−1.5, 1.5) and Cθ is specified with θ1 =

0.98 and θ2 = 0.1. The choice of this mixture model is based on a modification of the

simulation study in De Iorio et al. (2009). The log censoring times are simulated from a

uniform distribution on (3, 4) so that the censoring rate is about 20% ∼ 50%. This simulation

study is referred to as Scenario I, for which 100 Monte Carlo replicate datasets are generated.

First, we fit the LDDPM-spatial model using truncation level N = 10 under the default

prior specifications. We also fit the LDDPM-spatial model with Cθ approximated using

the FSA approach (denoted as LDDPM-spatial-FSA), where we experiment with m = 10

regularly spaced knots and B = 10 blocks taken as equally sized squares. Second, we fit

the PH-spatial model with default priors. Finally, we fit the LDDPM-ind model using the
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same priors as the LDDPM-spatial model. For each MCMC, we retain 10, 000 scans thinned

from 50, 000 after a burn-in period of 10, 000 iterations. To assess the prediction ability and

accuracy, for each above model, we calculate the LPML and mean squared prediction error

(MSPE), where MSPE =
∑100

i=1(yi − ỹi)2/100 with yis being the held-out true log survival

times and ỹis being the corresponding predicted values based on posterior means. The models

are also compared by computing the integrated squared error (ISE) for estimated survival

curves, given by ISE =

∫ ∞
0

{
Ŝ(y|x)− S(y|x)

}2

dy, where Ŝ(y|x) and S(y|x) are estimated

and true survival functions given x respectively.

[Table 1 about here.]

The posterior inferences for spatial correlation parameters θ = (θ1, θ2) under each approach

are presented in Table 1, where the bias of corresponding point estimates (i.e. posterior

means), the Monte Carlo mean of posterior standard deviation estimates (MEAN-SD),

the Monte Carlo standard deviation of point estimates (SD-MEAN), and the Monte Carlo

coverage probability of 95% credible intervals (CP) are reported. The results suggest that

the point estimates of θ are almost unbiased, and that the observed biases under the

LDDPM-spatial model are much smaller than the corresponding values under the PH-spatial

model. The MEAN-SD and SD-MEAN values are fairly close indicating that the posterior

standard deviation is an appropriate estimator of the frequentist standard error. The CPs

are around the nominal 95% level. In contrast, the PH-spatial model provides substantially

lower coverage probabilities. Furthermore, the posterior estimates with FSA are very close to

those using the exact model, suggesting that FSA is a good approximation of the correlation

matrix Cθ. Table 1 also presents the Monte Carlo mean of computing times under each

approach, where we see that FSA does speed up the computation as expected.

[Figure 1 about here.]

Figure 1 shows boxplots of the ISEs for estimated survival curves, LPMLs, and MSPEs
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under the considered models. The LDDPM-spatial models (with and without FSA) provide

much smaller biases of the fitted survival functions on average, compared with LDDPM-

ind and PH-spatial, indicating that either violation of the PH assumption or ignorance of

the spatial dependence could bias the inference. As for prediction ability and accuracy, the

proposed models (with and without FSA) yield the best prediction performance as measured

by both LPML and MSPE, compared with the PH-spatial and LDDPM-ind models. These

simulations, i.e., when the truth is known, show that the LPML is consistent with the MSPE

and hence validates its use for complex spatial models exhibiting dependence.

In Web Appendix E, we also tested the performance of LDDPM-spatial model when the

PH assumption is satisfied and compared it with the PH-spatial model. The results show

that two models provide almost the same boxplots of LPMLs and MSPEs, indicating that

the LDDP-spatial model is quite competitive even when the PH assumption is satisfied.

5. Application to Frog Data

From 1997 to 2002, all mapped lentic water bodies in Sequoia and Kings Canyon National

Parks were surveyed for mountain yellow-legged frogs. Starting in 2002 and continuing

through 2011, nearly all the frog populations that were discovered during the initial surveys

were visited every 1-2 years. A primary objective of these resurveys was to determine the

Bd status of each frog population over time. Bd attacks the keratinized tissues of tadpole

mouthparts and disrupts the normal black pigmentation of these structures. Therefore,

early efforts to detect Bd in live amphibians often relied on visual inspections of tadpole

mouthparts (see Table 4 in Knapp and Morgan, 2006). This method was replaced by a real-

time quantitative PCR assay (qPCR) in the mid-2000s (Boyle et al., 2004), and remains

the most reliable method for detecting Bd. In our data set, Bd status was determined using

the inspections of tadpole mouthparts during resurveys conducted from 2002 to 2004 and

using the qPCR after 2004. The data consist of n = 309 frog populations that were initially
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discovered during park-wide surveys conducted from 1997 to 2002, and then resurveyed

regularly through 2011. The observed event time is calculated as the number of years from

the initial survey to either Bd arrival or the last resurvey. By the end of the study, about

11% of the frog populations remained Bd-negative (censored). Table 2 presents a summary

of the data.

[Table 2 about here.]

We fit the LDDPM-spatial and PH-spatial models to the data using the same prior

specifications as previous simulations. We also fit the LDDPM-ind model, the standard

PH model λi(t) = λ0(t) exp{x′iβ} as well as the PH model with a point-referenced frailty

term λi(t) = λ0(t) exp{x′iβ + w(si)} (PH-frailty), where w(s) follows a Gaussian process

(GP) with the exponential covariance function, and the baseline hazard λ0(t) is modeled

in the same way as the PH-spatial model. Based upon examintion of trace plots for model

parameters in both the simulations and real data analyses, for each MCMC run we retain

20, 000 scans thinned from 200, 000 after a burn-in period of 200, 000 iterations. These are

grossly conservative numbers; burnin and thinning requirements may change considerably

depending on the amount of spatial correlation and data. The Markov chains mix reasonably

well for all fitted models. For the LDDPM models, the number of components with non-

negligible mass ranged from two to five, indicating at most five components in the mixture.

In Web Appendix F, we present the posterior trace plots for θ under the LDDPM-spatial

model.

[Table 3 about here.]

We first obtain the LPML values for all models under consideration as follows: −276.7

for LDDPM-spatial, −304.4 for PH-spatial, −631.5 for LDDPM-ind, −705.3 for PH and

−703.4 for PH-frailty. The LDDPM-spatial model provides significantly better prediction as

measured by LPML, with differences ranging from 27 to 428. Interestingly, the PH model
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augmented with a GP frailty surface hardly improves inference over the standard PH model.

In what follows, we only focus on interpreting results from the proposed model. Table 3 shows

posterior estimates of the spatial dependence parameters θ1 and θ2. The partial sill parameter

θ1 measures the maximum correlation between frog populations if they were located in the

same area location. Our analysis shows that such a correlation is very strong, almost equal

to 1. The parameter θ2 controls the decay of spatial dependence over distance measured

by kilometers. For instance, the posterior mean of θ2 = 0.133 indicates that the correlation

decays by 1 − e−0.133×5 ≈ 48.6% for every 5-km increase in distance. This tells us that the

spatial dependence still does not disappear even when the two frog populations are located

5-km apart.

[Figure 2 about here.]

Figure 2(b) shows, for example, for frogs living in a watershed that was Bd-positive during

the previous year, the population-averaged median Bd arrival time is cut from around 9.8

years to 4.5 years, more than half, when the distance to nearest Bd-positive location goes from

7.731-km to 0.443-km. Interestingly, the shapes of densities also change, going from unimodal

to bimodal in Figures 2(a) and 2(d). This figure clearly shows the invalidation of the standard

AFT model for these data. Similarly, Figure 2(c) shows that the non-proportional change in

hazards clearly invalidates the PH assumption. Comparing Bd-positive to Bd-negative in the

watershed yields strikingly different outcomes. Populations in basins in which Bd is present,

holding the distance to the nearest Bd-positive location constant, have a hazard spike near

zero reaching up to around 0.7 (Figure 2(f)). This implies that the population-averaged

probability of Bd arrival within one-year is about 70%. The corresponding survival curves

cross (Figure 2(e)), invalidating most common semiparametric models. These results are for

any frog population randomly found in the study region. The simulations in Section 4 show
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that if the accompanying spatial information s0 is also used, prediction will be accurately

refined.

[Figure 3 about here.]

We are also interested in predicting which areas have overall lower survival rates. Since

the marginal distribution at each location cannot be predicted unless the associated baseline

covariates are available, we instead show a spatial map (Figure 3) by smoothing the predicted

residual process z(s) at 10, 000 randomly simulated new locations over the national park.

One may interpret this map in a manner similar to the frailty map in the GP frailty PH

model in the absence of covariate information; lower value of z(s) indicates lower survival

rate at location s. Overall, the frog populations living in darker regions became infected by

Bd more earlier than lighter areas.

6. Concluding Remarks

This paper presents a unified approach to the nonparametric modeling of point-referenced

survival data. The methodology is broadly illustrated on an analysis of Bd arrival time

of yellow legged frog populations throughout Sequoia-Kings Canyon National Park. The

frog data presents a unique challenge and opportunity, as most common semiparametric

survival models are grossly violated and there is a strong spatial component to the data. In

the analysis, we considered two important measures of Bd proximity: bdwater and bddist;

additional covariates could be easily incorporated into the vector x in our model (De Iorio

et al., 2009; Jara et al., 2010). As expected, the closer a frog population is to a Bd-positive

location, the less time that population has until Bd infects them. This analysis shows how

modern, cutting edge statistical techniques can be used to understand a real ecological

problem, here predicting the arrival time by Bd in Bd-negative frog populations.

One surprising result is just how poorly the PH model can do in terms of prediction when
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it is wrong, even when a traditional GP spatial frailty surface is added to the linear predictor.

Zhao et al. (2009) note that in a conditional spatial survival setting, the survival model itself

is the most important factor affecting prediction, in their case choosing among PO, PH, or

AFT model. The survival model itself is more important than whether frailties are included,

or whether the frailties are spatially varying or exchangeable. This observation also holds

for the frog data: the assumptions that most semiparametric models imply are not met. In

particular, the traditional PH model is inadequate relative to a more flexible nonparametric

model. Once an appropriate nonparametric model has been chosen, the copula model can

drastically improve prediction. It may be that, for many data sets, the marginal copula-

based geostatistical modeling approach provides superior prediction over more traditional GP

random-effects models, e.g., the types that can be fit in SAS glimmix and mixed procedures,

the free BayesX program (Brezger et al., 2005). For this reason we have provided an efficient

R package spBayesSurv for others to explore the use of these geostatistical copula models.

One drawback of the proposed model is that covariate effects are interpreted by examining

the plots, which becomes challenging for high-dimensional covariates. Due to the inverse

of high-dimensional correlation matrices during MCMC, the LDDPM model can also suffer

longer computational times. In addition, the proposed model cannot handle time-dependent

covariates. The traditional PH model can handle time-dependent covariates, and can have

time-varying regression effects, which are not considered here nor were considered by Li and

Lin (2006). However, once the PH model is augmented with time-varying effects, inference is

also reduced to the examination of plots (e.g. survival curves and densities) and one might

as well start with a purely nonparametric model. Future research will examine the fit of

so-called additive spatial PH models, i.e. with time-varying regression effects.

An alternative way to incorporate spatial dependence into model (1) is to assume a

multivariate latent stick-breaking process prior (Rodríguez et al., 2010) for the random
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mixing measure G. This approach uses a copula representation only on the random mixing

measureG but requires constraints on the atoms in the mixing measure. The model is broadly

developed for the univariate case, but multivariate cases are problematic in that the order

constraint becomes complex even for two dimensions. The dimensionality of (βk,σ
2
k) in our

approach is four, but likely to be much higher in general. By taking the full LDDPM model

as the marginal in the copula representation, analysis is greatly simplified.

Supplementary Material

Web Appendices referenced in Sections 1, 3, 4, and 5, and sample R code fitting the proposed

model are available with this paper at the Biometrics website on Wiley Online Library.
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Figure 1. Simulated data – Scenario I. Panel (a) and (b): boxplots of ISEs for fitted
survival curves when x = −1 and x = 1, respectively. Panel (c): boxplots of LPMLs. Panel
(d): boxplots of MSPE. In each panel, the four models from left to right are LDDPM-ind,
LDDPM-spatial, LDDPM-spatial-FSA, and PH-spatial, respectively.
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Figure 2. Frog data. Fitted marginal densities (panels (a) and (d)), survival curves (panels
(b) and (e)) and hazard curves (panels (c) and (f)) with 90% point-wise credible intervals
for high versus low value of bddist when bdwater is equal to 0 (panels (a), (b) and (c))
and for bdwater=0 versus bdwater=1 when bddist is equal to its population mean of 2.717-
km (panels (d), (e) and (f)). In panels (a), (b) and (c), the results for bddist=95% and
bddist=5% quantiles are displayed as solid and dashed lines, respectively. In panels (d), (e)
and (f), the results for bdwater=0 and bdwater=1 are displayed as solid and dashed lines,
respectively.
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Figure 3. Frog data. Spatial map for the predicted residual process z(s) at 10, 000
randomly simulated new locations. Higher value implies better survival overall.
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Table 1
Simulated data – Scenario I. True value, bias of the point estimator (posterior mean), mean (across Monte Carlo
replicates) of the posterior standard deviations (MEAN-SD), standard deviation (across Monte Carlo replicates) of
the point estimator (SD-MEAN), and Monte Carlo coverage probability for the 95% credible interval (CP) for the

spatial correlation parameter θ. The averaged computing time is also presented.

Model Parameters True BIAS MEAN-SD SD-MEAN CP

LDDPM-spatial θ1 0.98 -0.026 0.028 0.028 0.91
(32 minutes) θ2 0.10 0.017 0.026 0.025 0.95
LDDPM-spatial-FSA θ1 0.98 -0.017 0.025 0.024 0.96
(24 minutes) θ2 0.10 0.016 0.025 0.023 0.93
PH-spatial θ1 0.98 -0.065 0.037 0.047 0.61
(24 minutes) θ2 0.10 -0.009 0.023 0.030 0.78
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Table 2
Frog data. Summary for event times, censoring status, bdwater, and bddist.

Time to Bd (yrs) Bd status bdwater bddist (km)

5 (median) 33 (censored) 57 (bdwater=1) 1.811 (median)
1-11 (range) 276 (event) 252 (bdwater=0) 0.092-9.189 (range)
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Table 3
Frog data. Posterior statistics for θ1 and θ2 under the LDDPM-spatial model assuming the exponential correlation

function. The computing time is also presented.

Model Parameters Mean Median Std. dev. 95% CI

LDDPM-spatial θ1 0.991 0.992 0.004 (0.982, 0.998)
(3.2 hours) θ2 0.133 0.130 0.040 (0.060, 0.216)


