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1 Web Appendix A: MCMC for the Marginal LDDPM
Spatial Survival Model

The full likelihood function for the data is given by
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Step 1: Update K; fort=1,... n.
The full conditional distribution for Kj; is

f(K;|else) o wKi(27ron)_1/2 exp {—
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It follows that | 2
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Step 2: Update y; fort=1,...,n.
The full conditional distribution for y; is
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fyilelse) oc &1 (y; = y?) + (1 — 6;)d(yil B, o,) exp {—52 (Co' — In)Z} Iy > y?).

If §; = 1, update y; = y?. If 6; = 0, propose y; from N (xgﬁKi,aii) distribution truncated
above at y? and accept it with probability

win {1, 200052(Co “ L)z} |
exp {—32/(Cy' — 1)z}

! z})" is the new transformed vector corresponding to y;.

*
where z* = (2],..., 2}

Step 3: Update 8, for k = 1,..., N using Metropolis-Hastings algorithms with delayed
rejection (Tierney and Mira, 1999).
The full conditional distribution for 3, is
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Propose B, from N, (p;,,3) and accept it with probability
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If B is rejected, we further propose 8" from N, (3,, %) and accept it with probability
az(By, By, By") as
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Step 4: Update o} for k=1,...,N.
The full conditional distribution for 0,;2 is
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Step 5: Update Vi, for k=1,..., N — 1.
Let n, = > » , I(K; = k). Note that z depends on the values of V}’s through the weithts
wy’s. Thus, the full conditional distribution V; is
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Propose V;* from Beta (1 + ng, o+ Z;V:k +1 nj> and accept it with probability
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Step 6: Update a.
The full conditional distribution for « is

f(alelse) o {1:[ F(l?(—;_)l)(l - Vk)a} x o™t exp{—bya}

N-1
N2 exp {—a <b0 — Z log(1 — Vk)> }
k=1
N-1
x Ga <a0+N— 1,b9 — Zlog(l —Vk)) .

k=1

Step 7: Update pu.
The full conditional distribution for g is
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Step 8: Update 3.



The full conditional distribution for 7! is
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Step 9: Update 8 = (6, 0:)" using adaptive Metropolis-Hastings algorithms (Haario et al.,
2001).

Let ¥ = c¢(¥1,02) with 91 = log (16191> and v = log(fy). Then, the full conditional

distribution for 9 is
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Suppose we are currently in time [ and have sampled the states ¥g, 91, ...,9;,_1. We select
an index [y > 0 for the length of an initial period and define

SO; ! S lO
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Here C; is the sample variance of 9,94, ...,9,_1. Set ¥, = %Zi;é ;. Following Haario
et al. (2001), we can use the recursive equations
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in which case we set 9¥; = 9", and otherwise 9¥; = 9,_;.



2 Web Appendix B: The Full Scale Approximation of
the Spatial Correlation Matrix Cgy

A computational bottleneck of the MCMC sampling scheme is inverting the n x n matrix
Cy, which typically has computational cost O(n?). In this section, we introduce a full scale
approximation (FSA) approach proposed by Sang and Huang (2012), which provides a high
quality approximation to the correlation function p at both the large and the small spatial
scales, such that the inverse of Cy can be substantially sped up for large value of n, e.g.,
n > 500.

Consider a fixed set of “knots” S* = {s},...,s’,} chosen from the study region. The
FSA approach approximates the correlation function p(s,s’) with

pl(5.8') = pils.s) + puls, ). (B2)

The pi(s,s’) in (B.2) is the reduced-rank part capturing the long-scale spatial dependence,
defined as p(s,s') = p/'(s,8%)p,;L (S*,S*)p(s',S*), where p(s, S*) = [p(s,s;)|™, is an m X 1
vector, and p,,,(S*,8*) = [p(s},s])]{%=, is an m X m correlation matrix at knots S*.
However, p(s,s’) cannot well capture the short-scale dependence due to the fact that it
discards entirely the residual part p(s,s’) — pi(s,s’). The idea of FSA is to add a small-
scale part ps(s,s’) as a sparse approximate of the residual part, defined by ps(s,s’) =
{p(s,s") — pi(s,s')} A(s,s’), where A(s,s’) is a modulating function, which is specified so
that the ps(s,s’) can well capture the local residual spatial dependence while still permits
efficient computations. Motivated by Konomi et al. (2014), we first partition the total input
space into B disjoint blocks, and then specify A(s,s’) in a way such that the residuals are
independent across input blocks, but the original residual dependence structure within each
block is retained. Specifically, the function A(s,s’) is taken to be 1 if s and s’ belong to the
same block and 0 otherwise.The approximated correlation function p'(s,s’) in (B.2) provides
an exact recovery of the true correlation within each block, and the approximation errors
are p(s,s’) — pi(s,s’) for locations s and s’ in different blocks. Those errors are expected to
be small for most entries because most of these location pairs are farther apart.

Applying the above FSA approach to approximate the correlation function p(s,s’), we
can approximate the correlation matrix p,,,, with

Pl = D1+ Py = PP Prm + (Prin = PrumPrmPam) © A, (B.3)

where Prm = [p(s’hs;)}i:lin,j:l:ma Prm = [p(Sf,S;)]szl, and A = [A(Slﬁsj)];fj:l' Here, the

notation “o” represents the element-wise matrix multiplication. It follows from equation
(B.3) that the covariance matrix Cg can be approximated by

C} = 01pl, + (1 — 00)L, = 019, PPl + Cs,

where C; = 01p,+(1—061)1,,. Applying the Sherman-Woodbury-Morrison formula for inverse

-1
matrices, we can approximate Cg, U by (CL) which is given by

(js_1 - elcs_lpnm (pmm + elpglmcs_lpnm)_l p,nmcs_l (B4)



In addition, the determinant of Cy can be approximated by det (C;) given as

det { Prm + 0100, Cy P | det(py) " det(Cy). (B.5)

Since the n x n matrix C; is a block matrix, the right-hand sides of equations (B.4) and
(B.5) involve only inverses and determinants of m x m low-rank matrices and n x n block
diagonal matrices. Thus the computational complexity can be greatly reduced relative to
the expensive computational cost of using original correlation function for large value of n.

3 Web Appendix C: Derivation of the CPO Statistic

Let fy, and Fy, be the density and distribution functions of 7; given x;, respectively. Ac-
cording to the hierarchical representation in Section 2.2, given all the model parameters
© = (B,0? V,0), we have
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According to the definition of CPO, we have CPO; = f (t2|D_;)% S (£2|D_;)' ™. Note that,
for (51 = 17
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Thus it follows that

1 1
o= (| s ersmiors]) (C8)

where the expectation E is taken with respect to the joint posterior of {t,©|D}. Here
f(t2)t—;,©) and S(t2|t_;, ©) are given by

0 _ L (THE(#IO)) — e fx,(t7]19)
feno) = o (TR ) e ey ©9)
Stlt-,0) =1~ { L {sz.(flé)} - ’“} :

where pi; = =3, C; @7 {Fy, (t:0©)} /Cy; and 02, = 1/Cy; with Cj; being the ijth element
of C1.

4 Web Appendix D: Bayesian Approach to Li and Lin
(2006)

4.1 Model Specification

Assume that T;|x; marginally follows the Cox proportional hazard model with cumulative
distribution function (cdf)

Fy,(t) =1—exp {—Ao(t)ex;ﬁ}

and probability density function (pdf)

Fo(t) = exp { = Ro(0)e? F Ao(1)e?,

where (3 is a p X 1 vector of regression coefficients, A\g(t) is the baseline hazard function and
Ao(t) = fot Mo(s)ds is the cumulative baseline hazard function. The piecewise exponential
model provides a flexible framework to deal with the baseline hazard (e.g. Walker and Mallick,
1997; Aslanidou et al., 1998; Qiou et al., 1999). We partition the time period R into M
intervals, say I = (dg_1,dk],k =1,..., M, where dy = 0 and dj; = co. The baseline hazard
is then assumed to be constant within each interval, i.e.

)\0(75) = th]{t € ]k}>

where hy, % Ga(voh, 1) are unknown hazard values and I{A} is the usual indicator function,
i.e. 1 when A is true, 0 otherwise. Consequently, the cumulative baseline hazard function
can be written as

M(t)
Ao(t) =) hilg(t),
k=1



where M(t) = min{k : dj, > t} and Ay(t) = min{dy, t} — di_1. In fact, the above piecewise
exponential model centers \o(t) at the exponential hazard family A\,(¢) = h indexed by h.
However the resulting predictive density is not differentiable at the jump points among the M
intervals, which is not desirable for many applications and especially for prediction purposes.
We propose a mixture of piecewise exponential model by taking the index h to be random;
the resulting mixture model yields a differentiable, i.e. smooth, density. Specifically, we
set dy = F, '(k/M),k = 0,..., M, where Fj,(-) is the cdf of exponential distribution with
rate parameter h, and put a prior on h, say h ~ N (hg, V). Regardless, after incorporating
spatial dependence as described in Section 2 of the main article, we consider the following
hierarchical model for the data together with the augmented latent true event-times:

51’t1:I(tZ:tf), 7;:1,...,7’1,
M(t)

B h~ F(t) =1 —exp{ — Y help(t)eXP 5 i=1,...,n
k=1

z=(z1,...,2)|t,8,0 ~ N,(0,C), z =&* {Fx,(t))},i=1,...,n (D.10)

itd

hi = Ga(roh, o),k =1,..., M, h~ N(hg,v3)

Blitg, o N, (o, Zo)

(91, 82) ~ Beta(@la, 615) X Ga(@za, ‘92[,)

where t = (t1,...,t,), h = (hq,..., hy). We consider following default hyper-prior values:
M =10, 79 =1, hg = h, gy = 0, By = 10°L,, 01, = b1, = 0o = O, = 1, where h is the
maximum likelihood estimate of the rate parameter h from fitting an exponential PH model.
An R function spCopulaCoxph calling compiled C++ to fit this model is provided in the R
package spBayesSurv accompanying this paper. We also provide a function indeptCoxph
to fit the non-spatial standard PH model with above baseline specification.

Remark: The function spCopulaCoxph provides an option to determine whether the
centering parameter h is random or not. For random h, the spCopulaCoxph fails to work for
certain data sets especially when spatial correlation is large; while the function indeptCoxph

works without any problem. However, when h is fixed, both functions work very well.
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4.2 MCMC
The full likelihood function for the data is given by

M roh D.11)
To roh—1 1 2 (
X kli[l Tl R exp{—rohi} X exp {—2—1)(2)(11 — ho) }
1 _
<exp { (8~ o) 258 - )}
X 9?1“_1(1 - 91)9”_1 X 932“_16_92”92
The MCMC sampling steps are as follow:
Step 1: Update h using adaptive Metropolis-Hastings.
The full conditional distribution for A is
1 proh b 1
hlel — " (R >0 ——(h — hg)®
Fibite) o L[ by 10> 0)exp { izt )
- 1
X exp {Mrghlog ro — MlogI'(roh) + rthIOg(hk) - ﬁ(h - h0)2} I(h>0).
Yo
k=1

Step 2: Update t; fori=1,...,n.
The full conditional distribution for ¢; is

f(tilelse) o< 6;1(t; =t7) + (1 — ;) fx, (t:) exp {—%z’(C1 — In)z} I(t; > 7).

If §; = 1, update t; = 2. If ; = 0, propose t; = F.'(u;) with u; from Uniform (F,(9),1),
and then accept it with probability

1ol T\
min{l exp{ 127'(C L)z }}7

" exp{—1z/(C' —1,)z}

* *

z*)" is the new transformed vector corresponding to ¢;.

iy R

Step 3: Update hy for k=1,..., M.

where z* = (2
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The full conditional distribution for Ay is

f(hilelse) o< exp ¢ — Z Z hi g () eXiP H hariey ¢ "t exp{—rohys}

i=1 k=1 {i:M(t;)=k}

X exp {—%z’(C_1 - In)z}

x exp { —hy Z Ak(ti)ex;ﬁ {th?:ll{M(ti):k}}h};oh_l exp{—rohs}
{e:M(ti) >k}

X exp {—%z’(c_l — In)z}

1
oc R exp {— (ro 4 1) hi} exp {_§Z/(01 - In)z} ,
where .
=Y H{M(t;) =k} and L, = > Ayt;)e"?
i=1 {i:M(t;)>k}
Propose h} from Ga (roh 4+ my, 70 + ) and accept it with probability

min{l eXp{ 2 */C 1_I> }}

exp{—iz (C!'—1,)z}

Step 4: Update B using adaptive Metropolis-Hastings.

n

f(Blelse) o exp { Z (—Ao(ti)ex;ﬂ - x;ﬁ) — %(ﬂ — 1) S5 (B = o) — %z/(c—l - In)z}

i=1
Let B be the maximum likelihood estimate of 3 from fitting an exponential Cox model and

S be its estimated covariance matrix. Suppose we are currently in time [ and have sampled
the states B, 3;,...,0;,_;. We select an index [y > 0 for the length of an initial period and

define R
g _ So, L <lo
LB+ 005) 1>

where C; is the sample covariance matrix of B3y, B,...,08, ;. Set B, = Z Oﬂ Following
(Haario et al., 2001), we can use the recursive equations

_ A 1
5l+1—l+1ﬁz+l+1/@l

and

l
Cri1 = cov(By, By, -, By) = 7 Z B:B; — i 15z+1ﬁ1+1

1

[ —
= ;i IBlﬁl ,6l+1,31+1 + Blﬁl/l
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Table 1: Simulated data — Scenario II. True value, bias of the point estimator (posterior
mean), mean (across Monte Carlo replicates) of the posterior standard deviations (MEAN-
SD), standard deviation (across Monte Carlo replicates) of the point estimator (SD-MEAN),
and Monte Carlo coverage probability for the 95% credible interval (CP) for the spatial
correlation parameter 6. The averaged computing time is also presented.

Model Parameters True BIAS MEAN-SD SD-MEAN CP

LDDPM-spatial 0, 0.98 -0.020 0.026 0.019 0.98
0, 0.10 0.018 0.027 0.028 0.93

PH-spatial 0, 0.98 -0.015 0.023 0.016 0.99
0, 0.10  0.009 0.019 0.023 0.90

It follows that for [ > [,

-1 2.4)?
Sip1 = ;i Sl+(2l)

(18,81~ (1 + V)BisBlas + BB +0.051, )

We propose 8* from N,(3,_,S;) and accept it with probability

. f(B|else)

Step 5: Update 8 = (01, 605)" in the same way as Step 9 in Web Appendix A.

5 Web Appendix E: Additional simulations

5.1 Supplements of Simulation — Scenario II

We test the performance of LDDPM-spatial model when the PH assumption is satisfied
and compare it with the PH-spatial model. Similarly to Scenario I, we randomly select 400
locations over the spatial region [0,40] x [0,100] and hold out 100 of them for assessing the
prediction performance. We then simulate the event times 7'(s) at these 400 locations from a
PH model F,(t) = 1 —exp {te "} with the same sample spatial dependence and distribution
on x as described in Scenario I. The noninformative censoring times are simulated from a
uniform distribution on (1,3) so that the censoring rate is about 15% ~ 35%.

Table 1 presents the posterior inferences for spatial correlation parameters 8 = (6, 65),
where the bias of corresponding point estimates (i.e. posterior means), the Monte Carlo
mean of posterior standard deviation estimates (MEAN-SD), the Monte Carlo standard
deviation of point estimates (SD-MEAN), and the Monte Carlo coverage probability of 95%
credible intervals (CP) are reported. The results suggest that the point estimates of 6
are almost unbiased under both the LDDPM-spatial and PH-spatial models. The MEAN-
SD and SD-MEAN values under the PH-spatial model are fairly close indicating that the
posterior standard deviation is an appropriate estimator of the frequentist standard error.
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Figure 1: Simulated data — Scenario II. Panel (a) and (b): boxplots of ISEs for fitted survival
curves when # = —1 and x = 1, respectively. Panel (c¢): boxplots of LPMLs. Panel (d):
boxplots of MSPE. In each panel, the two models from left to right are LDDPM-spatial and
PH-spatial, respectively.
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The CPs are around the nominal 95% level. Overall, even when data are generated from the
PH-spatial model, our model still performs reasonably well.

Figure 1 shows boxplots of the [SEs for estimated survival curves, LPMLs, and MSPEs
under the considered models. The PH-spatial model provides slightly smaller biases of the
fitted survival functions on average, compared with our model. As for prediction ability and
accuracy, the results show that two models provide almost the same boxplots of LPMLs and
MSPEs, indicating that the LDDP-spatial model is quite competitive even when the PH
assumption is satisfied.

6 Web Appendix F: Additional Results to the Analysis
of Frog Data

Table 2 shows posterior estimates of the spatial dependence parameters 6; and 6, under both
the LDDPM-spatial and PH-spatial models. Figure 2 presents the Kaplan-Meier survival
curves for bdwater=0 versus bdwater=1. The results show that standard parametric or
semi-parametric spatial models may be inadequate due to the presence of crossing survivals.
Figure 3 presents the trace plots for the correlation parameters @, which mix reasonably
well.

Table 2: Frog data. Posterior statistics for #; and 6, under the LDDPM-spatial and PH-
spatial models assuming the exponential correlation function. The computing time is also

presented.
Model Parameters Mean Median Std. dev. 95% CI
LDDPM-spatial 01 0.991  0.992 0.004 (0.982, 0.998)
(3.2 hours) 0 0.133  0.130 0.040 (0.060, 0.216)
PH-spatial 0, 0.995  0.995 0.002 (0.991, 0.999)
(2.8 hours) 0 0.081  0.080 0.013 (0.059, 0.109)

7 Web Appendix G: Sample R Code for Simulated
Data

The R package spBayesSurv is available at the website
http://cran.r-project.org/web/packages/spBayesSurv.

HHHAHBHHHHHAHBHHAH R HBHHAH B HBH B R RS H B RAH B R AR R B R AR R A HAH
# Sample R code for implementing the marginal LDDPM spatial

# survival model proposed by Zhou, Hanson, and Knapp (2015)

# based on a simulated data: mixture of two normals (see

# Section 4 in the paper).

# Provided by Haiming Zhou on 4/2/2015
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survival

year

Figure 2: Frog data. Kaplan-Meier survival curves for bdwater=0 (solid) versus bdwater=1
(dashed).
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Figure 3: Frog data. Trace plots for §; (panel a) and 6, (panel b).



HERHHHHHHH R R R R R R R

#H#-———— - Load libraries———-------———————-—- #i#
rm(list=1s())

library(MASS)

library (Rcpp)

library (RcppArmadillo)

library(coda)

library(survival)

library(spBayesSurv)

#H-——— Set the true models-------—--———- ##

## True parameters

betaT = cbind(c(3.5, 0.5), c(2.5, -1));
wl = c(0.4, 0.6);

sig2T = c(1°2, 0.572);

thetal = 0.98; theta2 = 0.1;

## The pdf of Ti:
fi = function(y, xi, w=wT){

nw = length(w);

ny = length(y);

res = matrix(0, ny, nw);
Xi = c(1,x1);

for (k in 1:nw){

res[,k] = wl[k]*dnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )
}

apply(res, 1, sum)

}

## The CDF of Ti:

Fi = function(y, xi, w=wT){

nw = length(w);

ny = length(y);

res = matrix(0, ny, nw);
Xi = c(1,x1);

for (k in 1:nw){

res[,k] = wlk]*pnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )
}

apply(res, 1, sum)

}

## The inverse for CDF of Ti

Finvsingle = function(u, xi) {

res = uniroot(function (x) Fi(x, xi)-u, lower=-1e50,
upper=1e50, tol=.Machine$double.eps~0.5);

res$root

}

Finv = function(u, xi) {sapply(u, Finvsingle, xi)};

## generate coordinates:

## npred is the # of locations for prediction

n = 300; npred = 30; ntot = n + npred;

1ldist = 100; wdist = 40;

sl = runif(ntot, 0, wdist); s2 = runif(ntot, 0, ldist);
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s = rbind(s1,s2);

#plot(s[1,], s[2,1);

## divide them into blocks

nldist=5; nwdist=2;

nb=nldist*nwdist; nb; # number of blocks;

coor = matrix(0, nb, 4); ## four edges for each block;
tempindex=1; lstep=ldist/nldist; wstep=wdist/nwdist;
for(i in 1:nwdist){

for(j in 1:nldist){

coor[tempindex,] = c((i-1)*wstep, i*wstep, (j-1)x*lstep, j*lstep );
tempindex = tempindex + 1;

}

}

## Assign block id for each location

blockid = rep(NA,ntot);

for(i in 1:nb){
blockid[((s1>coor[i,1])*(sl1<=coor[i,2])*(s2>coor[i,3])*(s2<=coor[i,4]))==1]=i;
}

## Choose knots S*

nldist=5; nwdist=2;

m=nldist*nwdist; m; # number of knots;

ss = matrix(0, m, 2);

tempindex=1; lstep=ldist/nldist; wstep=wdist/nwdist;
for(i in 1:nwdist){

for(j in 1:nldist){

ss[tempindex,] = c( (i-1)*wstep+wstep/2, (j-1)*1lstep+lstep/2);
tempindex = tempindex + 1;

}

}

## Covariance matrix

dnn = .Call("DistMat", s, s, PACKAGE = "spBayesSurv");
corT = thetal*exp(-theta2xdnn)+(1-thetal)*diag(ntot);

## Generate x

x = runif(ntot,-1.5,1.5);

X cbind(rep(1,ntot), x);

p = ncol(X); # number of covariates + 1
## Generate transformed log of survival times
z = mvrnorm(1l, rep(0, ntot), corT);

## Generate log of survival times y

u = pnorm(z);

y = rep(0, ntot);

for (i in 1:ntot){

y[i] = Finv(ul[il, x[il);

b
#plot(x,y);
yTrue = y;

## Censoring scheme

Centime = runif(ntot, 3,4); #Centime = 10000;
delta = (y<=Centime) +0 ;

sum(delta)/ntot; #non-censoring rate

cen = which(delta==0);

y[cen] = Centime[cen];
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## make a data frame

dtotal = data.frame(sl=sl, s2=s2, y=y, x=x, delta=delta,
yTrue=yTrue, id=blockid, t=exp(y));

## Hold out npred=30 for prediction purpose

predindex = sample(l:ntot, npred);

dpred = dtotal[predindex,];

dtrain = dtotal[-predindex,];

rename the variables

= dtrain; n=nrow(d); n;
d[order(d$id),];
cbind(d$s1, d$s2);

n Qo Q H*
|

# FSA settings
knots = list(ss=ss, blockid=d$id);

# Prediction settings

xpred = dpred$x;

s0 = cbind( dpred$sl, dpred$s2 );

prediction = list(spred=sO, xpred=xpred, predid=dpred$id);

I
# fit the model using default priors

g s s s
# MCMC parameters

nburn <- 2000

nsave <- 2000

nskip <- 0

ndisplay <- 500

mcmc <- list(nburn=nburn,

nsave=nsave,

nskip=nskip,

ndisplay=ndisplay)

# Prior information
prior = list(N = 10,
a0 = 2, b0 = 2);

# current state values
state <- NULL;

# Fit the model

ptm <- proc.time()

res = spCopulaDDP( y=d$y, delta=d$delta, x=d$x, s = s, prediction=prediction,
prior=prior, mcmc=mcmc,state=state,FSA=TRUE,knots=knots) ;
systime = sum((proc.time() - ptm)[1:2]);

# trace plots

par (mfrow = c(3,2))

w.save2 = res$w;

Kindex = which.max(rowMeans(w.save?2));
traceplot (mcmc (w.save2[Kindex,]), main="w"

sig2.save2 = res$sigma?2;

traceplot (mcmc(sig2.save2[Kindex,]), main="sig2")



beta.save2 = res$beta;

alpha.save2 = res$alpha;

traceplot (mcmc(beta.save2[2,Kindex,]), main="beta")
traceplot (mcmc(alpha.save2), main="alpha")
thetal.save2 = res$thetal;

theta2.save2 = res$theta2

traceplot (mcmc(thetal.save2), main="thetal")
traceplot (mcmc(theta2.save2), main="theta2")

## LPML

LPML2 = sum(log(res$cpo)); LPML2;

## MSPE

mean( (dpred$yTrue-apply(res$Ypred, 1, median))"2);

## Proportions for number of clusters
gg=gg=apply(res$w, 2, function(x) length(which(x>0.001)) );
table(gg) /length(gg) ;

## plots

par (mfrow = c(2,2));

xnew = c(-1, 1);

xpred = cbind(xnew);

nxpred = nrow(xpred);

ygrid = seq(0,6.0,0.05); tgrid = exp(ygrid);

ngrid = length(ygrid) ;

estimates = GetCurves(res, xpred, ygrid, CI=c(0.05, 0.95));
fhat = estimates$fhat;

Shat = estimates$Shat;

## density in y

plot(ygrid, fi(ygrid, xnew[1]), "1", 1lwd=2, ylim=c(0, 0.8),
x1im=c(0,6), main="density in y")

for(i in 1:nxpred){

lines(ygrid, fi(ygrid, xnew[i]), lwd=2)

lines(ygrid, fhat[,i], 1lty=2, lwd=2, col=4);

}

## survival in y

plot(ygrid, 1-Fi(ygrid, xnew[1]), "1", lwd=2, ylim=c(0, 1),
x1lim=c(0,6), main="survival in y")

for(i in 1:nxpred){

lines(ygrid, 1-Fi(ygrid, xnew[i]), 1lwd=2)

lines(ygrid, Shat[,i], lty=2, lwd=2, col=4);

lines(ygrid, estimates$Shatupl[,il, 1lty=2, lwd=1, col=4);
lines(ygrid, estimates$Shatlow[,i], 1ty=2, lwd=1, col=4);

}

## density in t

plot(tgrid, fi(ygrid, xnew[1])/tgrid, "1", lwd=2, ylim=c(0, 0.15),
x1im=c(0,100), main="density in t")

for(i in 1:nxpred){

lines(tgrid, fi(ygrid, xnewl[i])/tgrid, lwd=2)

lines(tgrid, fhat[,i]l/tgrid, lty=2, lwd=2, col=4);

}

## survival in t

plot(tgrid, 1-Fi(ygrid, xnew([1]), "1", lwd=2, ylim=c(0, 1),
x1im=c(0,100), main="survival in t")
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for(i in 1:nxpred){

lines(tgrid, 1-Fi(ygrid, xnew[i]), lwd=2)

lines(tgrid, Shat[,i], 1lty=2, 1lwd=2, col=4);
lines(tgrid, estimates$Shatupl[,il, 1lty=2, lwd=1, col=4);
lines(tgrid, estimates$Shatlow[,i], 1ty=2, lwd=1, col=4);
}

8 Web Appendix H: Measures of Dependence

In this section, we explore dependence relations between the original event times in the
framework of copula models. Kendall’s tau and Spearman’s rho are the two most widely
used scale-invariant measures for the overall dependence of a pair of subjects over the entire
lifespan by integrating over time, both of which are based on a form of dependence known as
concordance (Nelsen, 2006). In the context of survival data, we say a pair of random event
times are concordant if large (small) values of one tend to be associated with large (small)
values of the other, otherwise they are discordant. Specifically, when Y = (Y;,...,Y,) =
(logTi, ..., logT,) follows the marginal LDDPM spatial survival model, the Kendall’s tau
and Spearman’s rho of the original event times 7; and 7} (also the same as those of Y; and
Y, based on their definitions) can be expressed as

1 1
0 0

and .
pr; = 12/ / wu;dC; ;(ui,uj; 0) — 3 = 12E[UU;] — 3, (H.13)
0 0

where C; j(u;,u;j; 0) is a bivariate marginal of the n-dimensional Gaussian copula function
and (U;,U;) ~ C; j(u;,uj; 0). Thus the Kendall’s tau and Spearman’s rho are uniquely de-
termined by the copula function which further depends on the spatial correlation parameters
6. The range of these two measures are between -1 and 1, where the higher the value is, the
more concordant the two event times are. Although we don’t have closed forms for both Tfj(
and p?;, we can easily evaluate the expectations in equations (H.12) and (H.13) via posterior

simulation (Smith, 2013). Given a set of posterior samples {81 = 1,..., L}, we gener-
ate an iterate (Ui(l), U]@) from the bivariate marginal C; ;(u;, u;; "), and then estimate the
Kendall’s tau and Spearman’s rho by

L
~ 4 [ l
7 = T ZCi,j(Uf g Uf o) — 1, (H.14)
=1
and
12 o)1)
AS .
Pij = fZUz Uy” - L (H.15)
=1

For a given copula, the Kendall’s tau and Spearman’s rho between a pair of random variables
are not necessarily the same. In fact they are often quite different for many families of
copulas; see Nelsen (2006) for further illustrations.
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